SentenceTransformer based on sentence-transformers/all-roberta-large-v1
This is a sentence-transformers model finetuned from sentence-transformers/all-roberta-large-v1. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-roberta-large-v1
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 1024 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the ๐ค Hub
model = SentenceTransformer("hanwenzhu/all-roberta-large-v1-lr5e-5-bs256-nneg3-ml-mar16")
# Run inference
sentences = [
'Mathlib.Algebra.Polynomial.FieldDivision#94',
'normalize_apply',
'DifferentiableWithinAt.hasFDerivWithinAt',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 5,817,740 training samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 11 tokens
- mean: 16.44 tokens
- max: 24 tokens
- min: 3 tokens
- mean: 10.9 tokens
- max: 50 tokens
- Samples:
state_name premise_name Mathlib.Algebra.Field.IsField#12
Classical.choose_spec
Mathlib.Algebra.Field.IsField#12
IsField.mul_comm
Mathlib.Algebra.Field.IsField#12
eq_of_heq
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Evaluation Dataset
Unnamed Dataset
- Size: 1,959 evaluation samples
- Columns:
state_name
andpremise_name
- Approximate statistics based on the first 1000 samples:
state_name premise_name type string string details - min: 10 tokens
- mean: 17.08 tokens
- max: 24 tokens
- min: 5 tokens
- mean: 11.05 tokens
- max: 31 tokens
- Samples:
state_name premise_name Mathlib.Algebra.Algebra.Hom#80
AlgHom.commutes
Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237
NonUnitalAlgHom.instNonUnitalAlgSemiHomClass
Mathlib.Algebra.Algebra.NonUnitalSubalgebra#237
NonUnitalAlgebra.mem_top
- Loss:
loss.MaskedCachedMultipleNegativesRankingLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 256per_device_eval_batch_size
: 64num_train_epochs
: 1.0lr_scheduler_type
: cosinewarmup_ratio
: 0.03bf16
: Truedataloader_num_workers
: 4resume_from_checkpoint
: /data/user_data/thomaszh/models/all-roberta-large-v1-lr5e-5-bs256-nneg3-ml/checkpoint-22116
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 256per_device_eval_batch_size
: 64per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1.0max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.03warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 4dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: /data/user_data/thomaszh/models/all-roberta-large-v1-lr5e-5-bs256-nneg3-ml/checkpoint-22116hub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.9733 | 22120 | 1.1781 | - |
0.9738 | 22130 | 1.1226 | - |
0.9742 | 22140 | 1.219 | - |
0.9747 | 22150 | 1.1531 | - |
0.9751 | 22160 | 1.1907 | - |
0.9755 | 22170 | 1.2081 | - |
0.9760 | 22180 | 1.1849 | - |
0.9764 | 22190 | 1.1923 | - |
0.9769 | 22200 | 1.1496 | - |
0.9773 | 22210 | 1.1868 | - |
0.9777 | 22220 | 1.1968 | - |
0.9782 | 22230 | 1.2081 | - |
0.9786 | 22240 | 1.1685 | - |
0.9791 | 22250 | 1.1618 | - |
0.9795 | 22260 | 1.1504 | - |
0.9799 | 22270 | 1.1328 | - |
0.9804 | 22280 | 1.2012 | - |
0.9808 | 22290 | 1.2439 | - |
0.9813 | 22300 | 1.202 | - |
0.9817 | 22310 | 1.1656 | - |
0.9821 | 22320 | 1.1664 | - |
0.9826 | 22330 | 1.1423 | - |
0.9830 | 22340 | 1.177 | - |
0.9832 | 22344 | - | 1.3153 |
0.9835 | 22350 | 1.1704 | - |
0.9839 | 22360 | 1.1787 | - |
0.9843 | 22370 | 1.2041 | - |
0.9848 | 22380 | 1.2031 | - |
0.9852 | 22390 | 1.1365 | - |
0.9857 | 22400 | 1.212 | - |
0.9861 | 22410 | 1.1562 | - |
0.9865 | 22420 | 1.1781 | - |
0.9870 | 22430 | 1.1507 | - |
0.9874 | 22440 | 1.2138 | - |
0.9879 | 22450 | 1.1967 | - |
0.9883 | 22460 | 1.1548 | - |
0.9887 | 22470 | 1.2121 | - |
0.9892 | 22480 | 1.1681 | - |
0.9896 | 22490 | 1.1805 | - |
0.9901 | 22500 | 1.2138 | - |
0.9905 | 22510 | 1.179 | - |
0.9909 | 22520 | 1.1608 | - |
0.9914 | 22530 | 1.1851 | - |
0.9918 | 22540 | 1.1804 | - |
0.9923 | 22550 | 1.154 | - |
0.9927 | 22560 | 1.1649 | - |
0.9931 | 22570 | 1.1815 | - |
0.9932 | 22572 | - | 1.3150 |
0.9936 | 22580 | 1.201 | - |
0.9940 | 22590 | 1.1987 | - |
0.9945 | 22600 | 1.1885 | - |
0.9949 | 22610 | 1.1378 | - |
0.9953 | 22620 | 1.1776 | - |
0.9958 | 22630 | 1.1298 | - |
0.9962 | 22640 | 1.2037 | - |
0.9967 | 22650 | 1.1926 | - |
0.9971 | 22660 | 1.2298 | - |
0.9975 | 22670 | 1.1539 | - |
0.9980 | 22680 | 1.1929 | - |
0.9984 | 22690 | 1.1783 | - |
0.9989 | 22700 | 1.1222 | - |
0.9993 | 22710 | 1.1309 | - |
0.9997 | 22720 | 1.1766 | - |
Framework Versions
- Python: 3.11.8
- Sentence Transformers: 3.1.1
- Transformers: 4.45.1
- PyTorch: 2.5.1.post302
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.20.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MaskedCachedMultipleNegativesRankingLoss
@misc{gao2021scaling,
title={Scaling Deep Contrastive Learning Batch Size under Memory Limited Setup},
author={Luyu Gao and Yunyi Zhang and Jiawei Han and Jamie Callan},
year={2021},
eprint={2101.06983},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
- Downloads last month
- 4
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for hanwenzhu/all-roberta-large-v1-lr5e-5-bs256-nneg3-ml-mar16
Base model
sentence-transformers/all-roberta-large-v1