# model.py import pandas as pd from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score import pickle # Veriyi oku df = pd.read_csv("mobile_prices.csv") # Özellikleri ve hedefi ayır X = df.drop("price_range", axis=1) y = df["price_range"] # Eğitim-test bölmesi X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Modeli eğit model = RandomForestClassifier() model.fit(X_train, y_train) # Doğruluk y_pred = model.predict(X_test) print("Accuracy:", accuracy_score(y_test, y_pred)) # Modeli kaydet with open("model.pkl", "wb") as f: pickle.dump(model, f)