--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-lr-v2 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-lr-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6545 - Accuracy: 0.2858 - F1: 0.1724 - Precision: 0.1930 - Recall: 0.2858 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.6298 | 1.0 | 87 | 1.6693 | 0.2802 | 0.1665 | 0.1883 | 0.2802 | | 1.7023 | 2.0 | 174 | 1.7559 | 0.2194 | 0.1104 | 0.0765 | 0.2194 | | 1.732 | 3.0 | 261 | 1.7641 | 0.1731 | 0.0861 | 0.0702 | 0.1731 | | 1.7384 | 4.0 | 348 | 1.7511 | 0.2201 | 0.1064 | 0.0776 | 0.2201 | | 1.7189 | 5.0 | 435 | 1.7466 | 0.2259 | 0.1101 | 0.0786 | 0.2259 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3