--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v2 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-dt-v2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.2611 - Accuracy: 0.5899 - F1: 0.5891 - Precision: 0.5980 - Recall: 0.5899 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 1.5468 | 1.0 | 121 | 1.2644 | 0.5042 | 0.4882 | 0.5160 | 0.5042 | | 1.104 | 2.0 | 242 | 1.1827 | 0.5657 | 0.5662 | 0.5870 | 0.5657 | | 0.6801 | 3.0 | 363 | 1.2386 | 0.5850 | 0.5791 | 0.5858 | 0.5850 | | 0.3537 | 4.0 | 484 | 1.4693 | 0.5742 | 0.5733 | 0.5763 | 0.5742 | | 0.0661 | 5.0 | 605 | 1.6088 | 0.5850 | 0.5857 | 0.5874 | 0.5850 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3