--- license: apache-2.0 base_model: distilbert-base-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v1 results: [] --- # distilbert-base-uncased-english-cefr-lexical-evaluation-bs-v1 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1930 - Accuracy: 0.5941 - F1: 0.5907 - Precision: 0.5913 - Recall: 0.5941 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 44 | 1.4290 | 0.4439 | 0.3994 | 0.4597 | 0.4439 | | 1.5279 | 2.0 | 88 | 1.2962 | 0.5076 | 0.4992 | 0.5300 | 0.5076 | | 1.0713 | 3.0 | 132 | 1.2973 | 0.5293 | 0.5328 | 0.5564 | 0.5293 | | 0.624 | 4.0 | 176 | 1.3405 | 0.5583 | 0.5550 | 0.5559 | 0.5583 | | 0.3372 | 5.0 | 220 | 1.3920 | 0.5424 | 0.5445 | 0.5515 | 0.5424 | ### Framework versions - Transformers 4.31.0 - Pytorch 2.0.1+cu118 - Datasets 2.13.1 - Tokenizers 0.13.3