--- license: apache-2.0 tags: - generated_from_trainer datasets: - clinc_oos metrics: - accuracy model-index: - name: distilbert-base-uncased-distilled-clinc results: - task: name: Text Classification type: text-classification dataset: name: clinc_oos type: clinc_oos config: plus split: train args: plus metrics: - name: Accuracy type: accuracy value: 0.9470967741935484 --- # distilbert-base-uncased-distilled-clinc This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the clinc_oos dataset. It achieves the following results on the evaluation set: - Loss: 0.3180 - Accuracy: 0.9471 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 48 - eval_batch_size: 48 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 2.8197 | 1.0 | 318 | 2.0528 | 0.7435 | | 1.5825 | 2.0 | 636 | 1.0403 | 0.8684 | | 0.8215 | 3.0 | 954 | 0.5924 | 0.9110 | | 0.486 | 4.0 | 1272 | 0.4252 | 0.9345 | | 0.3488 | 5.0 | 1590 | 0.3693 | 0.9452 | | 0.2872 | 6.0 | 1908 | 0.3440 | 0.9452 | | 0.2564 | 7.0 | 2226 | 0.3297 | 0.9468 | | 0.2393 | 8.0 | 2544 | 0.3241 | 0.9465 | | 0.2317 | 9.0 | 2862 | 0.3208 | 0.9471 | | 0.2265 | 10.0 | 3180 | 0.3180 | 0.9471 | ### Framework versions - Transformers 4.22.2 - Pytorch 1.12.1+cu113 - Datasets 2.5.1 - Tokenizers 0.12.1