metadata
license: apache-2.0
base_model: hZzy/qwen2.5-0.5b-sft-news-IFT
tags:
- alignment-handbook
- ndcg
- trl
- expo
- generated_from_trainer
- trl
- expo
- generated_from_trainer
datasets:
- hZzy/train_pairwise
model-index:
- name: qwen2.5-0.5b-expo-EXDPO2
results: []
qwen2.5-0.5b-expo-EXDPO2
This model is a fine-tuned version of hZzy/qwen2.5-0.5b-sft-news-IFT on the hZzy/train_pairwise dataset. It achieves the following results on the evaluation set:
- Loss: 1.0827
- Logps: -99.3608
- Logits: -1.3686
- Objective: 1.0902
- Dpo Loss: 0.6830
- Regularize: 0.4072
- Ranking Simple: 0.5221
- Ranking Idealized: 0.5925
- Ranking Idealized Expo: 0.5166
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-07
- train_batch_size: 4
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 12
- total_train_batch_size: 192
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo |
---|---|---|---|---|---|---|---|---|---|---|---|
1.0911 | 0.1889 | 50 | 1.1043 | -97.7941 | -1.3092 | 1.1042 | 0.6905 | 0.4136 | 0.5166 | 0.5925 | 0.5166 |
1.0629 | 0.3778 | 100 | 1.0938 | -98.1420 | -1.3221 | 1.0948 | 0.6871 | 0.4077 | 0.5180 | 0.5925 | 0.5166 |
1.0597 | 0.5668 | 150 | 1.0886 | -97.5760 | -1.3388 | 1.0899 | 0.6843 | 0.4057 | 0.5193 | 0.5925 | 0.5166 |
1.0201 | 0.7557 | 200 | 1.0878 | -98.5525 | -1.3519 | 1.0928 | 0.6845 | 0.4083 | 0.5193 | 0.5925 | 0.5166 |
1.0173 | 0.9446 | 250 | 1.0863 | -99.3374 | -1.3586 | 1.0919 | 0.6845 | 0.4074 | 0.5193 | 0.5925 | 0.5166 |
0.9755 | 1.1335 | 300 | 1.0829 | -99.1144 | -1.3663 | 1.0893 | 0.6826 | 0.4067 | 0.5214 | 0.5925 | 0.5166 |
0.9708 | 1.3224 | 350 | 1.0829 | -99.2669 | -1.3642 | 1.0901 | 0.6833 | 0.4068 | 0.5221 | 0.5925 | 0.5166 |
0.968 | 1.5113 | 400 | 1.0829 | -99.2520 | -1.3682 | 1.0901 | 0.6832 | 0.4069 | 0.5214 | 0.5925 | 0.5166 |
0.9495 | 1.7003 | 450 | 1.0826 | -99.3216 | -1.3688 | 1.0900 | 0.6830 | 0.4070 | 0.5214 | 0.5925 | 0.5166 |
0.9463 | 1.8892 | 500 | 1.0827 | -99.3605 | -1.3686 | 1.0902 | 0.6830 | 0.4072 | 0.5221 | 0.5925 | 0.5166 |
Framework versions
- Transformers 4.42.0
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1