--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - alignment-handbook - ndcg - trl - expo - generated_from_trainer - trl - expo - generated_from_trainer datasets: - hZzy/train_pairwise_weighted model-index: - name: qwen2.5-0.5b-expo-DPO-noES4-1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/ijq21amu) # qwen2.5-0.5b-expo-DPO-noES4-1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on the hZzy/train_pairwise_weighted dataset. It achieves the following results on the evaluation set: - Loss: 2.0126 - Logps: -79.3398 - Logits: -0.6948 - Objective: 1.9384 - Dpo Loss: 1.9384 - Regularize: 1.9384 - Ranking Simple: 0.5430 - Wo Beta: 6.8782 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:--------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-------:| | 0.9504 | 0.1417 | 50 | 0.9836 | -92.0961 | -1.4075 | 0.9764 | 0.9764 | 0.9764 | 0.5259 | 7.7454 | | 1.2453 | 0.2834 | 100 | 1.2755 | -89.9832 | -1.3843 | 1.2122 | 1.2122 | 1.2122 | 0.5336 | 7.3870 | | 1.4306 | 0.4251 | 150 | 1.7989 | -76.2439 | -1.2411 | 1.7433 | 1.7433 | 1.7433 | 0.5357 | 7.2217 | | 1.3076 | 0.5668 | 200 | 1.9202 | -74.0915 | -1.1859 | 1.8276 | 1.8276 | 1.8276 | 0.5388 | 7.0633 | | 1.3919 | 0.7085 | 250 | 2.0724 | -78.0833 | -1.1719 | 2.0197 | 2.0197 | 2.0197 | 0.5331 | 7.1561 | | 1.1295 | 0.8503 | 300 | 2.0572 | -82.8187 | -0.9338 | 1.9944 | 1.9944 | 1.9944 | 0.5404 | 6.9967 | | 0.9469 | 0.9920 | 350 | 2.1175 | -81.5331 | -0.9147 | 1.9927 | 1.9927 | 1.9927 | 0.5383 | 6.8160 | | 0.6125 | 1.1337 | 400 | 2.2348 | -81.9750 | -0.7963 | 2.1620 | 2.1620 | 2.1620 | 0.5342 | 6.9279 | | 0.5932 | 1.2754 | 450 | 2.0919 | -81.2039 | -0.8203 | 2.0152 | 2.0152 | 2.0152 | 0.5378 | 6.8450 | | 0.6283 | 1.4171 | 500 | 2.1655 | -82.7384 | -0.6531 | 2.0804 | 2.0804 | 2.0804 | 0.5393 | 6.7975 | | 0.5148 | 1.5588 | 550 | 2.0636 | -83.5332 | -0.7097 | 1.9877 | 1.9877 | 1.9877 | 0.5352 | 6.7990 | | 0.3647 | 1.7005 | 600 | 2.0351 | -80.1348 | -0.6773 | 1.9649 | 1.9649 | 1.9649 | 0.5373 | 6.8458 | | 0.5325 | 1.8422 | 650 | 2.0596 | -80.1766 | -0.6632 | 1.9878 | 1.9878 | 1.9878 | 0.5419 | 6.8518 | | 0.3442 | 1.9839 | 700 | 2.0875 | -80.5005 | -0.6144 | 1.9977 | 1.9977 | 1.9977 | 0.5435 | 6.7884 | | 0.119 | 2.1256 | 750 | 2.0463 | -80.5714 | -0.6875 | 1.9523 | 1.9523 | 1.9523 | 0.5445 | 6.8488 | | 0.1373 | 2.2674 | 800 | 2.0092 | -80.3873 | -0.6842 | 1.9315 | 1.9315 | 1.9315 | 0.5461 | 6.8647 | | 0.131 | 2.4091 | 850 | 2.0060 | -80.0760 | -0.6729 | 1.9353 | 1.9353 | 1.9353 | 0.5450 | 6.8928 | | 0.1325 | 2.5508 | 900 | 2.0058 | -79.8102 | -0.6821 | 1.9324 | 1.9324 | 1.9324 | 0.5450 | 6.8844 | | 0.138 | 2.6925 | 950 | 2.0122 | -79.3969 | -0.6917 | 1.9363 | 1.9363 | 1.9363 | 0.5435 | 6.8712 | | 0.1283 | 2.8342 | 1000 | 2.0122 | -79.3139 | -0.6959 | 1.9376 | 1.9376 | 1.9376 | 0.5430 | 6.8769 | | 0.0938 | 2.9759 | 1050 | 2.0126 | -79.3398 | -0.6948 | 1.9384 | 1.9384 | 1.9384 | 0.5430 | 6.8782 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1