--- license: apache-2.0 base_model: hZzy/qwen2.5-0.5b-sft-news-IFT tags: - trl - expo - generated_from_trainer model-index: - name: qwen2.5-0.5b-expo-DPO-ES-0.1 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/zhiyuzha-university-of-florida/huggingface/runs/w0nbtpl2) # qwen2.5-0.5b-expo-DPO-ES-0.1 This model is a fine-tuned version of [hZzy/qwen2.5-0.5b-sft-news-IFT](https://huggingface.co/hZzy/qwen2.5-0.5b-sft-news-IFT) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.7091 - Logps: -107.9610 - Logits: -1.9041 - Objective: 0.7134 - Dpo Loss: 0.7134 - Regularize: 0.7134 - Ranking Simple: 0.5616 - Ranking Idealized: 0.6030 - Ranking Idealized Expo: 0.5223 - Wo Beta: 8.1968 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 3 - gradient_accumulation_steps: 12 - total_train_batch_size: 144 - total_eval_batch_size: 12 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Logps | Logits | Objective | Dpo Loss | Regularize | Ranking Simple | Ranking Idealized | Ranking Idealized Expo | Wo Beta | |:-------------:|:------:|:----:|:---------------:|:---------:|:-------:|:---------:|:--------:|:----------:|:--------------:|:-----------------:|:----------------------:|:-------:| | 0.6785 | 0.1417 | 50 | 0.6814 | -90.8721 | -1.6022 | 0.6843 | 0.6843 | 0.6843 | 0.5259 | 0.6030 | 0.5223 | 7.8749 | | 0.618 | 0.2834 | 100 | 0.6733 | -98.8900 | -1.7799 | 0.6766 | 0.6766 | 0.6766 | 0.5399 | 0.6030 | 0.5223 | 7.7840 | | 0.5667 | 0.4251 | 150 | 0.6867 | -99.1217 | -1.8072 | 0.6829 | 0.6829 | 0.6829 | 0.5409 | 0.6030 | 0.5223 | 7.8537 | | 0.5214 | 0.5668 | 200 | 0.6902 | -99.5153 | -1.8895 | 0.6905 | 0.6905 | 0.6905 | 0.5445 | 0.6030 | 0.5223 | 7.7013 | | 0.4922 | 0.7085 | 250 | 0.6976 | -82.8384 | -1.9887 | 0.6914 | 0.6914 | 0.6914 | 0.5481 | 0.6030 | 0.5223 | 7.8784 | | 0.4535 | 0.8503 | 300 | 0.6923 | -90.9491 | -2.1209 | 0.6894 | 0.6894 | 0.6894 | 0.5564 | 0.6030 | 0.5223 | 7.4232 | | 0.4228 | 0.9920 | 350 | 0.7064 | -87.7231 | -1.9803 | 0.6968 | 0.6968 | 0.6968 | 0.5538 | 0.6030 | 0.5223 | 8.0253 | | 0.2845 | 1.1337 | 400 | 0.7305 | -101.3180 | -2.0805 | 0.7269 | 0.7269 | 0.7269 | 0.5430 | 0.6030 | 0.5223 | 8.6164 | | 0.2989 | 1.2754 | 450 | 0.7005 | -93.1955 | -1.8646 | 0.6974 | 0.6974 | 0.6974 | 0.5606 | 0.6030 | 0.5223 | 8.2386 | | 0.3065 | 1.4171 | 500 | 0.7179 | -97.0137 | -1.9983 | 0.7147 | 0.7147 | 0.7147 | 0.5549 | 0.6030 | 0.5223 | 8.2760 | | 0.2885 | 1.5588 | 550 | 0.7091 | -107.9610 | -1.9041 | 0.7134 | 0.7134 | 0.7134 | 0.5616 | 0.6030 | 0.5223 | 8.1968 | ### Framework versions - Transformers 4.42.0 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1