#!/bin/bash # $1 is the name of the scripts folder # $2 is the name of output folder # $3 is the name of tasks # $4 is the gpu ids that used for training, seperated by comma IFS=',' read -ra arr <<< $3 CUDA_VISIBLE_DEVICES=$4 mkdir -p $2 echo "CUDA_VISIBLE_DEVICES="$CUDA_VISIBLE_DEVICES for fold in {0..4} do for task in ${arr[@]}; do echo "Begin "$task" fold "$fold mkdir $2/$task # check if task has finished, unless the skip argument is present logdir=$(cat $1/$task.5fold/$task.fold.$fold.yaml | grep log_dir | sed 's/.*: //') num_epochs=$(cat $1/$task.5fold/$task.fold.$fold.yaml | grep num_epochs | sed 's/.*: //') data_file_test=$(cat $1/$task.5fold/$task.fold.$fold.yaml | grep data_file_test: | sed 's/.*: //') data_file_train=$(cat $1/$task.5fold/$task.fold.$fold.yaml | grep data_file_train: | sed 's/.*: //') if [ -f $logdir/FOLD.0/model.epoch.$num_epochs.pt ] && [ -f $logdir/FOLD.1/model.epoch.$num_epochs.pt ] && [ -f $logdir/FOLD.2/model.epoch.$num_epochs.pt ] && [ -f $logdir/FOLD.3/model.epoch.$num_epochs.pt ]; then echo "Begin "$task" fold "$fold mkdir $2/$task if [ ! -f $2/$task/testing.fold.$fold.4fold.csv ]; then python -W ignore::UserWarning:torch_geometric.data.collate:147 train.py \ --conf $1/$task.5fold/$task.fold.$fold.yaml \ --data-file-test $data_file_test \ --mode interpret_4_fold --interpret-by both --out-dir $2/$task/testing.fold.$fold.4fold.csv fi if [ ! -f $2/$task/training.fold.$fold.4fold.csv ] && [[ ! $(cat scripts/gene.pfams.txt) == *"$task"* ]]; then python -W ignore::UserWarning:torch_geometric.data.collate:147 train.py \ --conf $1/$task.5fold/$task.fold.$fold.yaml \ --data-file-test $data_file_train \ --mode interpret_4_fold --interpret-by both --out-dir $2/$task/training.fold.$fold.4fold.csv fi else echo $task" fold "$fold" not finished" fi done done