library(ggplot2) py.path = '/share/descartes/Users/gz2294/miniconda3/envs/RESCVE/bin/python' task.dic <- list("PTEN"=c("score.1"="stability", "score.2"="enzyme.activity"), "NUDT15"=c("score.1"="stability", "score.2"="enzyme.activity"), "CCR5"=c("score.1"="stability", "score.2"="binding Ab2D7", "score.3"="binding HIV-1"), "CXCR4"=c("score.1"="stability", "score.2"="binding CXCL12", "score.3"="binding Ab12G5"), "SNCA"=c("score.1"="enzyme.activity", "score.2"="stability"), "CYP2C9"=c("score.1"="enzyme.activity", "score.2"="stability"), "GCK"=c("score.1"="enzyme.activity", "score.2"="stability"), "ASPA"=c("score.1"="stability", "score.2"="enzyme.activity") ) source('./prepare.biochem.R') genes <- c("PTEN", "NUDT15", "CCR5", "CXCR4", "SNCA", "CYP2C9", "GCK", "ASPA") # add baseline AUC # esm alphabets source('./AUROC.R') biochem.cols <- c('secondary_struc', 'rsa', 'conservation.entropy', 'conservation.alt', 'conservation.ref', 'pLDDT') alphabet <- c('', '', '', '', 'L', 'A', 'G', 'V', 'S', 'E', 'R', 'T', 'I', 'D', 'P', 'K', 'Q', 'N', 'F', 'Y', 'M', 'H', 'W', 'C', 'X', 'B', 'U', 'Z', 'O', '.', '-', '', '') # get test results result <- data.frame() for (i in 1:length(genes)) { test.result <- read.csv(paste0('PreMode/', genes[i], '/test.fold.0.annotated.csv')) anno.all <- read.csv(paste0('../data.files/', genes[i], '/ALL.annotated.csv')) anno.all <- prepare.unique.id(anno.all) task.length <- length(task.dic[[genes[i]]]) for (subset in c(1,2,4,6,8)) { for (fold in 0:4) { # REVEL, PrimateAI, ESM AUC if (subset == 8) { test.result <- read.csv(paste0('PreMode/', genes[i], '/', '/testing.fold.', fold, '.csv')) gene.train <- read.csv(paste0('../data.files/', genes[i], '/', '/train.seed.', fold, '.csv')) # get train config train.config <- yaml::read_yaml(paste0('../scripts/PreMode/', genes[i], '.5fold/', genes[i], '.fold.', fold, '.yaml')) # get train val split baseline.result.2 <- read.csv(paste0('ESM.SLP/', genes[i], '/', '/testing.fold.', fold, '.csv')) # add hsu et al results hsu.unirep_onehot.auc <- list(R2=c()) hsu.ev_onehot.auc <- list(R2=c()) hsu.gesm_onehot.auc <- list(R2=c()) hsu.eve_onehot.auc <- list(R2=c()) for (s in 1:task.length) { test.result.hsu <- read.csv(paste0('./Hsu.et.al.git/results/', genes[i], '.fold.', fold, '.score.', s, '/results.csv')) hsu.unirep_onehot.auc$R2 <- c(hsu.unirep_onehot.auc$R2, test.result.hsu$spearman[match('eunirep_ll+onehot', test.result.hsu$predictor)]) hsu.ev_onehot.auc$R2 <- c(hsu.ev_onehot.auc$R2, test.result.hsu$spearman[match('ev+onehot', test.result.hsu$predictor)]) hsu.gesm_onehot.auc$R2 <- c(hsu.gesm_onehot.auc$R2, test.result.hsu$spearman[match('gesm+onehot', test.result.hsu$predictor)]) hsu.eve_onehot.auc$R2 <- c(hsu.eve_onehot.auc$R2, test.result.hsu$spearman[match('vae+onehot', test.result.hsu$predictor)]) } } else { test.result <- read.csv(paste0('PreMode/', genes[i], '/', '/testing.subset.', subset, '.fold.', fold, '.csv')) gene.train <- read.csv(paste0('../data.files/', genes[i], '/', '/training.', subset, '.', fold, '.csv')) train.config <- yaml::read_yaml(paste0('../scripts/PreMode/', genes[i], '.subsets/subset.', subset, '/seed.', fold, '.yaml')) baseline.result.2 <- read.csv(paste0('ESM.SLP/', genes[i], '/', '/testing.subset.', subset, '.fold.', fold, '.csv')) # add hsu et al results hsu.unirep_onehot.auc <- list(R2=c()) hsu.ev_onehot.auc <- list(R2=c()) hsu.gesm_onehot.auc <- list(R2=c()) hsu.eve_onehot.auc <- list(R2=c()) for (s in 1:task.length) { test.result.hsu <- read.csv(paste0('./Hsu.et.al.git/results/', genes[i], '.subset.', subset, '.fold.', fold, '.score.', s, '/results.csv')) hsu.unirep_onehot.auc$R2 <- c(hsu.unirep_onehot.auc$R2, test.result.hsu$spearman[match('eunirep_ll+onehot', test.result.hsu$predictor)]) hsu.ev_onehot.auc$R2 <- c(hsu.ev_onehot.auc$R2, test.result.hsu$spearman[match('ev+onehot', test.result.hsu$predictor)]) hsu.gesm_onehot.auc$R2 <- c(hsu.gesm_onehot.auc$R2, test.result.hsu$spearman[match('gesm+onehot', test.result.hsu$predictor)]) hsu.eve_onehot.auc$R2 <- c(hsu.eve_onehot.auc$R2, test.result.hsu$spearman[match('vae+onehot', test.result.hsu$predictor)]) } } np <- reticulate::import('numpy') train.val.split <- np$load(paste0('../', train.config$log_dir, 'splits.0.npz')) gene.train <- gene.train[train.val.split['idx_train']+1,] test.result <- prepare.unique.id(test.result) gene.train <- prepare.unique.id(gene.train) test.result[,biochem.cols] <- anno.all[match(test.result$unique.id, anno.all$unique.id), biochem.cols] gene.train[,biochem.cols] <- anno.all[match(gene.train$unique.id, anno.all$unique.id), biochem.cols] PreMode.auc <- plot.R2(test.result[,names(task.dic[[genes[i]]])], test.result[,paste0("logits.", 0:(task.length-1))], bin = grepl("bin", genes[i])) baseline.auc.2 <- plot.R2(baseline.result.2[,names(task.dic[[genes[i]]])], baseline.result.2[,paste0("logits.", 0:(task.length-1))], bin = grepl("bin", genes[i])) # write train and test emb to files train.label.file <- tempfile() test.label.file <- tempfile() train.biochem.file <- tempfile() test.biochem.file <- tempfile() write.csv(gene.train, file = train.label.file) write.csv(test.result, file = test.label.file) write.csv(prepare.biochemical(gene.train), file = train.biochem.file) write.csv(prepare.biochemical(test.result), file = test.biochem.file) res <- system(paste0(py.path, ' ', 'elastic.net.dms.py ', train.biochem.file, ' ', train.label.file, ' ', test.biochem.file, ' ', test.label.file), intern = T) baseline.auc.3 <- list(R2=as.numeric(as.data.frame(strsplit(res, split = '='))[2,])) to.append <- data.frame(min.val.R = c(PreMode.auc$R2, baseline.auc.3$R2, baseline.auc.2$R2, hsu.gesm_onehot.auc$R2, hsu.ev_onehot.auc$R2, hsu.unirep_onehot.auc$R2, hsu.eve_onehot.auc$R2 ), task.name = paste0(genes[i], ":", rep(task.dic[[genes[i]]], 7))) to.append$model <- rep(c("PreMode", "Elastic Net", "ESM+SLP", "Augmented ESM1b", "Augmented EVmutation", "Augmented Unirep", "Augmented EVE" ), each = task.length) to.append$subset <- subset to.append$seed <- fold result <- rbind(result, to.append) } } } num.models <- unique(result$model) # show weighted average # plot the task weighted averages as well as task size weighted error bars uniq.result.plot <- result[result$seed==0,] for (i in 1:dim(uniq.result.plot)[1]) { rhos <- result$min.val.R[result$model==uniq.result.plot$model[i] & result$task.name==uniq.result.plot$task.name[i] & result$subset==uniq.result.plot$subset[i]] rhos <- rhos[rhos > 0] uniq.result.plot$rho[i] = mean(rhos, na.rm=T) uniq.result.plot$rho.sd[i] = sd(rhos, na.rm=T) } plots <- list() library(patchwork) for (i in 1:length(task.dic)) { task <- names(task.dic)[i] task.res <- uniq.result.plot[startsWith(uniq.result.plot$task.name, paste0(task, ":")),] task.res <- task.res[,!is.na(task.res[1,])] assays <- length(task.dic[[i]]) data.points <- c() for (subset in c(1,2,4,6)) { data.points <- c(data.points, as.numeric( strsplit(system(paste0("wc -l ", "../data.files/", task, "/training.", subset, ".0.csv"), intern = T), " ")[[1]][1])-1) } data.points <- c(data.points, as.numeric( strsplit(system(paste0("wc -l ", "../data.files/", task, "/training.csv"), intern = T), " ")[[1]][1])) task.plots <- list() for (k in 1:length(num.models)) { model <- num.models[k] to.plot <- task.res[task.res$model==model,] p <- ggplot(to.plot, aes(x=subset, y=rho, col=task.name)) + geom_point() + geom_errorbar(aes(ymin=rho-rho.sd, ymax=rho+rho.sd), width=.4) + # geom_line(aes(y=zero.shot), linetype="dotted") + geom_line() + scale_y_continuous(breaks=seq(0, 1, 0.2), limits = c(-0.1, 1.05)) + scale_x_continuous(breaks=c(1, 2, 4, 6, 8), labels=paste0(data.points, c(" (10%)", " (20%)", " (40%)", " (60%)", " (80%)"))) + ylab('Spearman rho') + theme_bw() + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + ggtitle(paste0(task, ":", model)) + ggeasy::easy_center_title() + xlab("training data size (%)") task.plots[[k]] <- p } plots[[i]] <- ggpubr::ggarrange(plotlist = task.plots, ncol = length(num.models), common.legend = T, legend = "bottom") } library(patchwork) p <- plots[[1]] / plots[[2]] / plots[[3]] / plots[[4]] / plots[[5]] / plots[[6]] / plots[[7]] / plots[[8]] ggsave(p, filename = paste0("figs/fig.sup.4.pdf"), width = 20, height = 28) # aggregate across models uniq.model.result.plot <- uniq.result.plot[!duplicated(uniq.result.plot[,c('model', "subset")]),] for (i in 1:dim(uniq.model.result.plot)[1]) { rhos <- uniq.result.plot$rho[uniq.result.plot$model == uniq.model.result.plot$model[i] & uniq.result.plot$subset == uniq.model.result.plot$subset[i]] rho.sds <- uniq.result.plot$rho.sd[uniq.result.plot$model == uniq.model.result.plot$model[i] & uniq.result.plot$subset == uniq.model.result.plot$subset[i]] genes <- gsub(":.*", "", uniq.result.plot$task.name[uniq.result.plot$model == uniq.model.result.plot$model[i] & uniq.result.plot$subset == uniq.model.result.plot$subset[i]]) subsets <- uniq.result.plot$subset[uniq.result.plot$model == uniq.model.result.plot$model[i] & uniq.result.plot$subset == uniq.model.result.plot$subset[i]] # get data set sizes data.points <- c() for (k in 1:length(genes)) { if (subsets[k] != 8) { data.points <- c(data.points, as.numeric( strsplit(system(paste0("wc -l ", "../data.files/", genes[k], "/training.", subsets[k], ".0.csv"), intern = T), " ")[[1]][1])-1) } else { data.points <- c(data.points, as.numeric( strsplit(system(paste0("wc -l ", "../data.files/", genes[k], "/training.csv"), intern = T), " ")[[1]][1])-1) } } uniq.model.result.plot$rho[i] <- sum(rhos * data.points, na.rm = T) / sum(data.points) uniq.model.result.plot$rho.sd[i] <- sum(rho.sds * data.points, na.rm = T) / sum(data.points) } p <- ggplot(uniq.model.result.plot, aes(x=subset, y=rho, col=model)) + geom_point() + geom_errorbar(aes(ymin=rho-rho.sd, ymax=rho+rho.sd), width=.2) + geom_line() + scale_y_continuous(breaks=seq(0, 1, 0.2), limits = c(-0.1, 1.05)) + scale_x_continuous(breaks=c(1, 2, 4, 6, 8), labels=paste0(c(" (10%)", " (20%)", " (40%)", " (60%)", " (80%)"))) + ylab('Spearman rho') + theme_bw() + ggtitle("Weighted Average of Model \nperformances on subsample of training") + ggeasy::easy_center_title() + xlab("training data size (% of full DMS dataset)") ggsave('figs/fig.4c.pdf', p, width = 5, height = 4)