File size: 29,207 Bytes
7718235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
import argparse
import numpy as np
import torch
import yaml


class LoadFromFile(argparse.Action):
    # parser.add_argument('--file', type=open, action=LoadFromFile)
    def __call__(self, parser, namespace, values, option_string=None):
        if values.name.endswith("yaml") or values.name.endswith("yml"):
            with values as f:
                config = yaml.load(f, Loader=yaml.FullLoader)
            for key in config.keys():
                if key not in namespace:
                    raise ValueError(f"Unknown argument in config file: {key}")
            if (
                    "load_model" in config
                    and namespace.load_model is not None
                    and config["load_model"] != namespace.load_model
            ):
                Warning(
                    f"The load model argument was specified as a command line argument "
                    f"({namespace.load_model}) and in the config file ({config['load_model']}). "
                    f"Ignoring 'load_model' from the config file and loading {namespace.load_model}."
                )
                del config["load_model"]
            namespace.__dict__.update(config)
        else:
            raise ValueError("Configuration file must end with yaml or yml")


# TODO: for all functions, shuffle in a way that guarantee the same batch does not contain same protein.
def train_val_test_split(dset_len, train_size, val_size, test_size, seed, order=None):
    assert (train_size is None) + (val_size is None) + (
            test_size is None
    ) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
        isinstance(test_size, float),
    )

    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size
    test_size = round(dset_len * test_size) if is_float[2] else test_size

    if train_size is None:
        train_size = dset_len - val_size - test_size
    elif val_size is None:
        val_size = dset_len - train_size - test_size
    elif test_size is None:
        test_size = dset_len - train_size - val_size

    if train_size + val_size + test_size > dset_len:
        if is_float[2]:
            test_size -= 1
        elif is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0 and test_size >= 0, (
        f"One of training ({train_size}), validation ({val_size}) or "
        f"testing ({test_size}) splits ended up with a negative size."
    )

    total = train_size + val_size + test_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    idxs = np.arange(dset_len, dtype=np.int)
    if order is None:
        idxs = np.random.default_rng(seed).permutation(idxs)

    idx_train = idxs[:train_size]
    idx_val = idxs[train_size: train_size + val_size]
    idx_test = idxs[train_size + val_size: total]

    if order is not None:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]
        idx_test = [order[i] for i in idx_test]

    return np.array(idx_train), np.array(idx_val), np.array(idx_test)


def make_splits_train_val_test(
        dataset_len,
        train_size,
        val_size,
        test_size,
        seed,
        filename=None,
        splits=None,
        order=None,
):
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
        idx_test = splits["idx_test"]
    else:
        idx_train, idx_val, idx_test = train_val_test_split(
            dataset_len, train_size, val_size, test_size, seed, order
        )

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val, idx_test=idx_test)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
        torch.from_numpy(idx_test),
    )


def train_val_split(dset_len, train_size, val_size, seed, order=None):
    assert (train_size is None) + (
            val_size is None) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
    )
    # dset_len: int = len(dset)

    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size

    if train_size is None:
        train_size = dset_len - val_size
    elif val_size is None:
        val_size = dset_len - train_size

    if train_size + val_size > dset_len:
        if is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0, (
        f"One of training ({train_size}), validation ({val_size})"
        f" splits ended up with a negative size."
    )

    total = train_size + val_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    idxs = np.arange(dset_len, dtype=np.int)
    if order is None:
        idxs = np.random.default_rng(seed).permutation(idxs)

    idx_train = idxs[:train_size]
    idx_val = idxs[train_size: total]

    if order is not None:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]

    return np.array(idx_train), np.array(idx_val)


def make_splits_train_val(
        dset,
        train_size,
        val_size,
        seed,
        batch_size=48,  # unused
        filename=None,
        splits=None,
        order=None,
):
    dset_len = len(dset)
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
    else:
        idx_train, idx_val = train_val_split(dset_len, train_size, val_size, seed, order)

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
    )


def make_splits_train_val_by_anno(
        dset,
        train_size,
        val_size,
        seed,
        batch_size=48,  # unused
        filename=None,
        splits=None,
        order=None,
):
    dset_len = len(dset)
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
    else:
        idx_train = np.where(dset.data['split'] == 'train')[0]
        idx_val = np.where(dset.data['split'] == 'val')[0]

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
    )


def train_val_split_by_uniprot_id(dset, train_size, val_size, seed, batch_size=48, order=None):
    assert (train_size is None) + (
            val_size is None) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
    )
    dset_len: int = len(dset)

    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size

    if train_size is None:
        train_size = dset_len - val_size
    elif val_size is None:
        val_size = dset_len - train_size

    if train_size + val_size > dset_len:
        if is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0, (
        f"One of training ({train_size}), validation ({val_size})"
        f" splits ended up with a negative size."
    )

    total = train_size + val_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    uniprot_freq_table = dset.data.uniprotID.value_counts()
    selected_val_uniprotIDs, _ = select_by_uniprot(uniprot_freq_table, val_size)

    idxs = np.arange(dset_len, dtype=np.int)
    idx_train = idxs[np.isin(dset.data.uniprotID, selected_val_uniprotIDs, invert=True)]
    idx_val = idxs[np.isin(dset.data.uniprotID, selected_val_uniprotIDs)]

    if order is None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
        idx_val = np.random.default_rng(seed).permutation(idx_val)
        idx_train = guarantee_no_same_protein_in_one_batch(
            idx_train, batch_size, np.array(dset.data.uniprotID.iloc[idx_train] + dset.data.ENST.iloc[idx_train])
        )
        idx_val = guarantee_no_same_protein_in_one_batch(
            idx_val, batch_size, np.array(dset.data.uniprotID.iloc[idx_val] + dset.data.ENST.iloc[idx_val])
        )
    else:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]

    return np.array(idx_train), np.array(idx_val)


def make_splits_train_val_by_uniprot_id(
        dset,
        train_size,
        val_size,
        seed,
        batch_size=48,
        filename=None,
        splits=None,
        order=None,
):
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
    else:
        idx_train, idx_val = train_val_split_by_uniprot_id(dset, train_size, val_size, seed, batch_size, order)

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
    )


def train_val_split_by_good_batch(dset, train_size, val_size, seed, batch_size=48, order=None):
    assert (train_size is None) + (
            val_size is None) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
    )
    dset_len: int = len(dset)

    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size

    if train_size is None:
        train_size = dset_len - val_size
    elif val_size is None:
        val_size = dset_len - train_size

    if train_size + val_size > dset_len:
        if is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0, (
        f"One of training ({train_size}), validation ({val_size})"
        f" splits ended up with a negative size."
    )

    total = train_size + val_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    idxs = np.arange(dset_len, dtype=np.int)
    if order is None:
        idxs = np.random.default_rng(seed).permutation(idxs)

    idx_train = idxs[:train_size]
    idx_val = idxs[train_size: total]
    
    if order is None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
        idx_val = np.random.default_rng(seed).permutation(idx_val)
        idx_train = guarantee_good_batch(idx_train, batch_size, dset)
    else:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]
    
    return np.array(idx_train), np.array(idx_val)


def make_splits_train_val_by_good_batch(
        dset,
        train_size,
        val_size,
        seed,
        batch_size=48,
        filename=None,
        splits=None,
        order=None,
):
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
    else:
        idx_train, idx_val = train_val_split_by_good_batch(dset, train_size, val_size, seed, batch_size, order)

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
    )


def train_val_split_by_uniprot_id_good_batch(dset, train_size, val_size, seed, batch_size=48, order=None):
    assert (train_size is None) + (
            val_size is None) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
    )
    dset_len: int = len(dset)

    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size

    if train_size is None:
        train_size = dset_len - val_size
    elif val_size is None:
        val_size = dset_len - train_size

    if train_size + val_size > dset_len:
        if is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0, (
        f"One of training ({train_size}), validation ({val_size})"
        f" splits ended up with a negative size."
    )

    total = train_size + val_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    uniprot_freq_table = dset.data.uniprotID.value_counts()
    selected_val_uniprotIDs, _ = select_by_uniprot(uniprot_freq_table, val_size)

    idxs = np.arange(dset_len, dtype=np.int)
    idx_train = idxs[np.isin(dset.data.uniprotID, selected_val_uniprotIDs, invert=True)]
    idx_val = idxs[np.isin(dset.data.uniprotID, selected_val_uniprotIDs)]

    if order is None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
        idx_val = np.random.default_rng(seed).permutation(idx_val)
        idx_train = guarantee_good_batch(idx_train, batch_size, dset)
    else:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]

    return np.array(idx_train), np.array(idx_val)


def make_splits_train_val_by_uniprot_id_good_batch(
        dset,
        train_size,
        val_size,
        seed,
        batch_size=48,
        filename=None,
        splits=None,
        order=None,
):
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
    else:
        idx_train, idx_val = train_val_split_by_uniprot_id_good_batch(dset, train_size, val_size, seed, batch_size, order)

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
    )


def train_val_test_split_by_uniprot_id(dset, train_size, val_size, test_size, seed, batch_size=48, order=None):
    assert (train_size is None) + (val_size is None) + (
            test_size is None
    ) <= 1, "Only one of train_size, val_size, test_size is allowed to be None."
    is_float = (
        isinstance(train_size, float),
        isinstance(val_size, float),
        isinstance(test_size, float),
    )
    dset_len: int = len(dset)
    train_size = round(dset_len * train_size) if is_float[0] else train_size
    val_size = round(dset_len * val_size) if is_float[1] else val_size
    test_size = round(dset_len * test_size) if is_float[2] else test_size

    if train_size is None:
        train_size = dset_len - val_size - test_size
    elif val_size is None:
        val_size = dset_len - train_size - test_size
    elif test_size is None:
        test_size = dset_len - train_size - val_size

    if train_size + val_size + test_size > dset_len:
        if is_float[2]:
            test_size -= 1
        elif is_float[1]:
            val_size -= 1
        elif is_float[0]:
            train_size -= 1

    assert train_size >= 0 and val_size >= 0 and test_size >= 0, (
        f"One of training ({train_size}), validation ({val_size}) or "
        f"testing ({test_size}) splits ended up with a negative size."
    )

    total = train_size + val_size + test_size
    assert dset_len >= total, (
        f"The dataset ({dset_len}) is smaller than the "
        f"combined split sizes ({total})."
    )
    if total < dset_len:
        Warning(f"{dset_len - total} samples were excluded from the dataset")

    uniprot_freq_table = dset.data.uniprotID.value_counts()
    selected_test_uniprotIDs, uniprot_freq_table = select_by_uniprot(uniprot_freq_table, test_size)
    selected_val_uniprotIDs, uniprot_freq_table = select_by_uniprot(uniprot_freq_table, val_size)

    idxs = np.arange(dset_len, dtype=np.int)

    idx_test = idxs[np.isin(dset.data.uniprotID, selected_test_uniprotIDs)]
    idx_val = idxs[np.isin(dset.data.uniprotID, selected_val_uniprotIDs)]
    idx_train = idxs[np.isin(dset.data.uniprotID, selected_test_uniprotIDs + selected_val_uniprotIDs, invert=True)]

    if order is None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
        idx_val = np.random.default_rng(seed).permutation(idx_val)
        idx_test = np.random.default_rng(seed).permutation(idx_test)
        idx_train = guarantee_no_same_protein_in_one_batch(
            idx_train, batch_size, np.array(dset.data.uniprotID.iloc[idx_train] + dset.data.ENST.iloc[idx_train])
        )
        idx_val = guarantee_no_same_protein_in_one_batch(
            idx_val, batch_size, np.array(dset.data.uniprotID.iloc[idx_val] + dset.data.ENST.iloc[idx_val])
        )
        idx_test = guarantee_no_same_protein_in_one_batch(
            idx_test, batch_size, np.array(dset.data.uniprotID.iloc[idx_test] + dset.data.ENST.iloc[idx_test])
        )
    else:
        idx_train = [order[i] for i in idx_train]
        idx_val = [order[i] for i in idx_val]
        idx_test = [order[i] for i in idx_test]

    return np.array(idx_train), np.array(idx_val), np.array(idx_test)


def make_splits_train_val_test_by_uniprot_id(
        dset,
        train_size,
        val_size,
        test_size,
        seed,
        batch_size=48,
        filename=None,
        splits=None,
        order=None,
):
    if splits is not None:
        splits = np.load(splits)
        idx_train = splits["idx_train"]
        idx_val = splits["idx_val"]
        idx_test = splits["idx_test"]
    else:
        idx_train, idx_val, idx_test = train_val_test_split_by_uniprot_id(
            dset, train_size, val_size, test_size, seed, batch_size, order
        )

    if filename is not None:
        np.savez(filename, idx_train=idx_train, idx_val=idx_val, idx_test=idx_test)

    return (
        torch.from_numpy(idx_train),
        torch.from_numpy(idx_val),
        torch.from_numpy(idx_test),
    )


def reshuffle_train_by_uniprot_id(idx_train, batch_size, dset, seed=None):
    idx_train = guarantee_no_same_protein_in_one_batch(
            idx_train, batch_size, 
            np.array(dset.data.uniprotID.iloc[idx_train] + dset.data.ENST.iloc[idx_train]),
            seed=seed
        )
    return idx_train


def reshuffle_train_by_good_batch(idx_train, batch_size, dset, seed=None):
    idx_train = guarantee_good_batch(
            idx_train, batch_size, dset, seed=seed
        )
    return idx_train


def reshuffle_train_by_uniprot_id_good_batch(idx_train, batch_size, dset, seed=None):
    return reshuffle_train_by_good_batch(idx_train, batch_size, dset, seed)


def reshuffle_train_by_anno(idx_train, batch_size, dset, seed=None):
    if seed is not None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
    else:
        idx_train = np.random.permutation(idx_train)
    return idx_train


def reshuffle_train(idx_train, batch_size, dset, seed=None):
    if seed is not None:
        idx_train = np.random.default_rng(seed).permutation(idx_train)
    else:
        idx_train = np.random.permutation(idx_train)
    return idx_train


def select_by_uniprot(freq_table, number_to_select):
    selected = 0
    selected_uniprotIDs = []
    candidates = freq_table[freq_table <= number_to_select - selected]
    while selected < number_to_select and len(candidates) > 0:
        selected_uniprotID = np.random.choice(candidates.index)
        selected_uniprotIDs.append(selected_uniprotID)
        selected += freq_table[selected_uniprotID]
        # update freq_table and candidates
        freq_table = freq_table.drop(selected_uniprotID)
        candidates = freq_table[freq_table <= number_to_select - selected]
    return selected_uniprotIDs, freq_table


def guarantee_no_same_protein_in_one_batch(idxs, batch_size, protein_identifiers, seed=0):
    assert len(idxs) == len(protein_identifiers)
    if seed is not None:
        np.random.seed(seed)
    # assume idxs and protein_identifiers are shuffled
    result = []
    while len(protein_identifiers) >= batch_size:
        unique_protein_identifiers, first_idx, counts = np.unique(protein_identifiers,
                                                                  return_index=True, return_counts=True)
        if len(unique_protein_identifiers) < batch_size:
            break
        unique_random_selected = np.random.choice(unique_protein_identifiers,
                                                  size=batch_size, replace=False, p=counts / sum(counts))
        unique_random_selected_idx = first_idx[[np.argwhere(unique_protein_identifiers == i)[0][0]
                                                for i in unique_random_selected]]
        result += list(idxs[unique_random_selected_idx])
        # drop selected
        idxs = np.delete(idxs, unique_random_selected_idx)
        protein_identifiers = np.delete(protein_identifiers, unique_random_selected_idx)
    # if idxs is not empty, append it to result
    if len(idxs) > 0:
        result += list(idxs)
    return np.array(result)


def guarantee_good_batch_not_same_len(idxs, batch_size, dset, seed=0):
    # guarantee generate good batches during training, which at least include:
    # A positive example in gene A.
    # A negative example in gene A.
    # A positive example in gene !A.
    # A negative example in gene !A.
    # This only work for binary classification problem
    assert batch_size >= 4
    if seed is not None:
        np.random.seed(seed)
    # first get all positives and negatives
    pos_idxs = idxs[dset.data[dset._y_columns[0]].iloc[idxs] == 1]
    pos_ids = dset.data["uniprotID"].iloc[pos_idxs].to_numpy()
    neg_idxs = idxs[dset.data[dset._y_columns[0]].iloc[idxs] != 1]
    neg_ids = dset.data["uniprotID"].iloc[neg_idxs].to_numpy()
    # assume idxs and protein_identifiers are shuffled
    result = []
    # loop through all positive idexes
    for i in range(len(pos_idxs)):
        id = pos_ids[i]
        result.append(pos_idxs[i])
        # get negative example in the same protein
        neg_idx = neg_idxs[neg_ids == id]
        if len(neg_idx) > 0:
            result.append(np.random.choice(neg_idx))
        else:
            result.append(np.random.choice(neg_idxs))
        # get positive example in different protein
        pos_idx = pos_idxs[pos_ids != id]
        if len(pos_idx) == 0:
            pos_idx = pos_idxs[pos_idxs != pos_idxs[i]]
        result.append(np.random.choice(pos_idx))
        # get negative example in different protein
        neg_idx = neg_idxs[neg_ids != id]
        if len(neg_idx) == 0:
            neg_idx = neg_idxs[neg_idxs != neg_idxs[i]]
        result.append(np.random.choice(neg_idx))
        # if batch_size is larger than 4, randomly select more
        if batch_size > 4:
            result += list(np.random.choice(idxs, size=batch_size - 4, replace=False))
    # if some idxs are not used, randomly select them
    unused_idxs = np.setdiff1d(idxs, result)
    if len(unused_idxs) > 0:
        result += list(unused_idxs)
    return np.array(result)


def guarantee_good_batch(idxs, batch_size, dset, seed=0):
    # guarantee generate good batches during training, which at least include:
    # A positive example in gene A.
    # A negative example in gene A.
    # A positive example in gene !A.
    # A negative example in gene !A.
    # This only work for binary classification problem
    assert batch_size >= 4
    if seed is not None:
        np.random.seed(seed)
    if not isinstance(idxs, np.ndarray):
        idxs = np.array(idxs)
    # first get all positives and negatives
    pos_label = 3
    if sum(dset.data[dset._y_columns[0]].iloc[idxs] == 1) > 0:
        pos_label = 1
    pos_idxs = idxs[dset.data[dset._y_columns[0]].iloc[idxs] == pos_label]
    pos_ids = dset.data["uniprotID"].iloc[pos_idxs].to_numpy()
    neg_idxs = idxs[dset.data[dset._y_columns[0]].iloc[idxs] != pos_label]
    neg_ids = dset.data["uniprotID"].iloc[neg_idxs].to_numpy()
    # assume idxs and protein_identifiers are shuffled
    result = []
    # loop through all positive idexes
    while len(pos_idxs) > 0:
        this_batch_added = 0
        # get a positive example
        pos_idx = np.random.choice(pos_idxs)
        id = pos_ids[pos_idxs == pos_idx][0]
        result.append(pos_idx)
        this_batch_added += 1
        # drop selected
        pos_ids = np.delete(pos_ids, np.argwhere(pos_idxs == pos_idx))
        idxs = np.delete(idxs, np.argwhere(idxs == pos_idx))
        pos_idxs = np.delete(pos_idxs, np.argwhere(pos_idxs == pos_idx))
        # get negative example in the same protein
        neg_idx = neg_idxs[neg_ids == id]
        if len(neg_idx) > 0:
            neg_idx = np.random.choice(neg_idx)
        elif len(neg_idxs) > 0:
            neg_idx = np.random.choice(neg_idxs)
        else:
            neg_idx = None
        if neg_idx is not None:
            result.append(neg_idx)
            this_batch_added += 1
            # drop selected
            neg_ids = np.delete(neg_ids, np.argwhere(neg_idxs == neg_idx))
            idxs = np.delete(idxs, np.argwhere(idxs == neg_idx))
            neg_idxs = np.delete(neg_idxs, np.argwhere(neg_idxs == neg_idx))
        # get positive example in different protein
        pos_idx_candidate = pos_idxs[pos_ids != id]
        if len(pos_idx_candidate) == 0:
            pos_idx_candidate = pos_idxs[pos_idxs != pos_idx]
        if len(pos_idx_candidate) > 0:
            pos_idx = np.random.choice(pos_idx_candidate)
            result.append(pos_idx)
            this_batch_added += 1
            # drop selected
            pos_ids = np.delete(pos_ids, np.argwhere(pos_idxs == pos_idx))
            idxs = np.delete(idxs, np.argwhere(idxs == pos_idx))
            pos_idxs = np.delete(pos_idxs, np.argwhere(pos_idxs == pos_idx))
        # get negative example in different protein
        neg_idx_candidate = neg_idxs[neg_ids != id]
        if len(neg_idx_candidate) == 0:
            neg_idx_candidate = neg_idxs[neg_idxs != neg_idx]
        if len(neg_idx_candidate) > 0:
            neg_idx = np.random.choice(neg_idx_candidate)
            result.append(neg_idx)
            this_batch_added += 1
            # drop selected
            neg_ids = np.delete(neg_ids, np.argwhere(neg_idxs == neg_idx))
            idxs = np.delete(idxs, np.argwhere(idxs == neg_idx))
            neg_idxs = np.delete(neg_idxs, np.argwhere(neg_idxs == neg_idx))
        # if batch_size is larger than this_batch_added, randomly select more
        if batch_size > this_batch_added and len(idxs) >= batch_size - this_batch_added:
            to_add = np.random.choice(idxs, size=batch_size - this_batch_added, replace=False)
            result += list(to_add)
            # drop selected
            for idx in to_add:
                pos_ids = np.delete(pos_ids, np.argwhere(pos_idxs == idx))
                pos_idxs = np.delete(pos_idxs, np.argwhere(pos_idxs == idx))
                neg_ids = np.delete(neg_ids, np.argwhere(neg_idxs == idx))
                neg_idxs = np.delete(neg_idxs, np.argwhere(neg_idxs == idx))
                idxs = np.delete(idxs, np.argwhere(idxs == idx))
    # if some idxs are not used, randomly select them
    unused_idxs = np.setdiff1d(idxs, result)
    if len(unused_idxs) > 0:
        result += list(unused_idxs)
    return np.array(result)


def save_argparse(args, filename, exclude=None):
    import json

    if filename.endswith("yaml") or filename.endswith("yml"):
        if isinstance(exclude, str):
            exclude = [exclude]
        args = args.__dict__.copy()
        for exl in exclude:
            del args[exl]

        ds_arg = args.get("dataset_arg")
        if ds_arg is not None and isinstance(ds_arg, str):
            args["dataset_arg"] = json.loads(args["dataset_arg"])
        yaml.dump(args, open(filename, "w"))
    else:
        raise ValueError("Configuration file should end with yaml or yml")