--- language: - zh license: apache-2.0 tags: - generated_from_trainer datasets: - gyr66/privacy_detection metrics: - precision - recall - f1 - accuracy base_model: gyr66/RoBERTa-finetuned-privacy-detection model-index: - name: RoBERTa-finetuned-privacy-detection results: - task: type: token-classification name: Token Classification dataset: name: gyr66/privacy_detection type: gyr66/privacy_detection config: privacy_detection split: train args: privacy_detection metrics: - type: precision value: 0.6168845082494108 name: Precision - type: recall value: 0.7248237663645518 name: Recall - type: f1 value: 0.6665123278157193 name: F1 - type: accuracy value: 0.9061190926862569 name: Accuracy --- # RoBERTa-finetuned-privacy-detection This model is a fine-tuned version of [gyr66/RoBERTa-finetuned-privacy-detection](https://huggingface.co/gyr66/RoBERTa-finetuned-privacy-detection) on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set: - Loss: 0.3534 - Precision: 0.6169 - Recall: 0.7248 - F1: 0.6665 - Accuracy: 0.9061 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 56 - eval_batch_size: 56 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.2027 | 1.0 | 36 | 0.3485 | 0.5913 | 0.7273 | 0.6523 | 0.9030 | | 0.1652 | 2.0 | 72 | 0.3534 | 0.6153 | 0.7314 | 0.6684 | 0.9053 | | 0.143 | 3.0 | 108 | 0.3534 | 0.6169 | 0.7248 | 0.6665 | 0.9061 | ### Framework versions - Transformers 4.27.3 - Pytorch 2.0.1+cu117 - Datasets 2.14.5 - Tokenizers 0.13.2