librarian-bot's picture
Librarian Bot: Add base_model information to model
3500c74
|
raw
history blame
2.42 kB
metadata
language:
  - zh
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - gyr66/privacy_detection
metrics:
  - precision
  - recall
  - f1
  - accuracy
base_model: gyr66/RoBERTa-finetuned-privacy-detection
model-index:
  - name: RoBERTa-finetuned-privacy-detection
    results:
      - task:
          type: token-classification
          name: Token Classification
        dataset:
          name: gyr66/privacy_detection
          type: gyr66/privacy_detection
          config: privacy_detection
          split: train
          args: privacy_detection
        metrics:
          - type: precision
            value: 0.6168845082494108
            name: Precision
          - type: recall
            value: 0.7248237663645518
            name: Recall
          - type: f1
            value: 0.6665123278157193
            name: F1
          - type: accuracy
            value: 0.9061190926862569
            name: Accuracy

RoBERTa-finetuned-privacy-detection

This model is a fine-tuned version of gyr66/RoBERTa-finetuned-privacy-detection on the gyr66/privacy_detection dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3534
  • Precision: 0.6169
  • Recall: 0.7248
  • F1: 0.6665
  • Accuracy: 0.9061

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 56
  • eval_batch_size: 56
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.2027 1.0 36 0.3485 0.5913 0.7273 0.6523 0.9030
0.1652 2.0 72 0.3534 0.6153 0.7314 0.6684 0.9053
0.143 3.0 108 0.3534 0.6169 0.7248 0.6665 0.9061

Framework versions

  • Transformers 4.27.3
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.5
  • Tokenizers 0.13.2