File size: 2,418 Bytes
611ab5a 1e68d77 611ab5a e4a7c04 611ab5a 3500c74 611ab5a 3500c74 611ab5a 1e68d77 e4a7c04 611ab5a 3500c74 35366f7 3500c74 35366f7 3500c74 35366f7 3500c74 35366f7 3500c74 611ab5a 1e68d77 611ab5a 35366f7 611ab5a 35366f7 611ab5a 35366f7 611ab5a 35366f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
---
language:
- zh
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- gyr66/privacy_detection
metrics:
- precision
- recall
- f1
- accuracy
base_model: gyr66/RoBERTa-finetuned-privacy-detection
model-index:
- name: RoBERTa-finetuned-privacy-detection
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: gyr66/privacy_detection
type: gyr66/privacy_detection
config: privacy_detection
split: train
args: privacy_detection
metrics:
- type: precision
value: 0.6168845082494108
name: Precision
- type: recall
value: 0.7248237663645518
name: Recall
- type: f1
value: 0.6665123278157193
name: F1
- type: accuracy
value: 0.9061190926862569
name: Accuracy
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# RoBERTa-finetuned-privacy-detection
This model is a fine-tuned version of [gyr66/RoBERTa-finetuned-privacy-detection](https://huggingface.co/gyr66/RoBERTa-finetuned-privacy-detection) on the gyr66/privacy_detection dataset.
It achieves the following results on the evaluation set:
- Loss: 0.3534
- Precision: 0.6169
- Recall: 0.7248
- F1: 0.6665
- Accuracy: 0.9061
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 56
- eval_batch_size: 56
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.2027 | 1.0 | 36 | 0.3485 | 0.5913 | 0.7273 | 0.6523 | 0.9030 |
| 0.1652 | 2.0 | 72 | 0.3534 | 0.6153 | 0.7314 | 0.6684 | 0.9053 |
| 0.143 | 3.0 | 108 | 0.3534 | 0.6169 | 0.7248 | 0.6665 | 0.9061 |
### Framework versions
- Transformers 4.27.3
- Pytorch 2.0.1+cu117
- Datasets 2.14.5
- Tokenizers 0.13.2
|