--- library_name: peft tags: - gpt-j - gpt-j-6b - code - instruct - instruct-code - code-alpaca - alpaca-instruct - alpaca - llama7b - gpt2 datasets: - ewof/code-alpaca-instruct-unfiltered base_model: EleutherAI/gpt-j-6b --- We finetuned GPT-J 6B on Code-Alpaca-Instruct Dataset (ewof/code-alpaca-instruct-unfiltered) for 5 epochs or ~ 25,000 steps using [MonsterAPI](https://monsterapi.ai) no-code [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm). This dataset is HuggingFaceH4/CodeAlpaca_20K unfiltered, removing 36 instances of blatant alignment. The finetuning session got completed in 206 minutes and costed us only `$8` for the entire finetuning run! #### Hyperparameters & Run details: - Model Path: EleutherAI/gpt-j-6b - Dataset: ewof/code-alpaca-instruct-unfiltered - Learning rate: 0.0003 - Number of epochs: 5 - Data split: Training: 90% / Validation: 10% - Gradient accumulation steps: 1 Loss metrics: ![training loss](train-loss.png "Training loss") --- license: apache-2.0 ---