--- library_name: transformers license: mit base_model: BAAI/bge-small-en-v1.5 tags: - generated_from_trainer model-index: - name: bge-small-en-v1.5-2024-12-06_21-55-53-quality-weight-0.1 results: [] --- # bge-small-en-v1.5-2024-12-06_21-55-53-quality-weight-0.1 This model is a fine-tuned version of [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0214 - Spearman: 0.9268 - Pearson: 0.9311 - Mse: 0.0214 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 64 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Spearman | Pearson | Mse | |:-------------:|:------:|:-----:|:---------------:|:--------:|:-------:|:------:| | 0.0325 | 0.3998 | 1055 | 0.0286 | 0.8985 | 0.9051 | 0.0286 | | 0.0278 | 0.7997 | 2110 | 0.0255 | 0.9081 | 0.9158 | 0.0255 | | 0.0238 | 1.1995 | 3165 | 0.0249 | 0.9123 | 0.9200 | 0.0249 | | 0.0235 | 1.5994 | 4220 | 0.0224 | 0.9199 | 0.9262 | 0.0224 | | 0.0211 | 1.9992 | 5275 | 0.0230 | 0.9212 | 0.9286 | 0.0230 | | 0.0182 | 2.3991 | 6330 | 0.0222 | 0.9218 | 0.9299 | 0.0222 | | 0.0172 | 2.7989 | 7385 | 0.0211 | 0.9240 | 0.9318 | 0.0211 | | 0.0136 | 3.1988 | 8440 | 0.0212 | 0.9253 | 0.9312 | 0.0212 | | 0.014 | 3.5986 | 9495 | 0.0210 | 0.9263 | 0.9326 | 0.0210 | | 0.0144 | 3.9985 | 10550 | 0.0208 | 0.9264 | 0.9330 | 0.0208 | | 0.0109 | 4.3983 | 11605 | 0.0210 | 0.9264 | 0.9329 | 0.0210 | | 0.0123 | 4.7982 | 12660 | 0.0210 | 0.9267 | 0.9331 | 0.0210 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.1+cu121 - Datasets 2.19.2 - Tokenizers 0.20.3