--- tags: - autotrain - text-classification language: - en widget: - text: "I love AutoTrain 🤗" datasets: - guriko/autotrain-data-cv-sentiment co2_eq_emissions: emissions: 0.707048910768399 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 41629107126 - CO2 Emissions (in grams): 0.7070 ## Validation Metrics - Loss: 0.653 - Accuracy: 0.864 - Macro F1: 0.840 - Micro F1: 0.864 - Weighted F1: 0.861 - Macro Precision: 0.874 - Micro Precision: 0.864 - Weighted Precision: 0.870 - Macro Recall: 0.826 - Micro Recall: 0.864 - Weighted Recall: 0.864 ## Usage You can use cURL to access this model: ``` $ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/guriko/autotrain-cv-sentiment-41629107126 ``` Or Python API: ``` from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("guriko/autotrain-cv-sentiment-41629107126", use_auth_token=True) tokenizer = AutoTokenizer.from_pretrained("guriko/autotrain-cv-sentiment-41629107126", use_auth_token=True) inputs = tokenizer("I love AutoTrain", return_tensors="pt") outputs = model(**inputs) ```