--- metrics: - precision: 0.9360 - recall: 0.9458 - f1: 0.9409 - accuracy: 0.9902 model-index: - name: gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner --- # gunghio/distilbert-base-multilingual-cased-finetuned-conll2003-ner This model was trained from scratch on an conll2003 dataset. It achieves the following results on the evaluation set: - Loss: 0.0388 - Precision: 0.9360 - Recall: 0.9458 - F1: 0.9409 - Accuracy: 0.9902 ## Model description It is based on distilbert-base-multilingual-cased ## Intended uses & limitations More information needed ## Training and evaluation data Training dataset: [conll2003](https://huggingface.co/datasets/conll2003) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1653 | 1.0 | 878 | 0.0465 | 0.9267 | 0.9300 | 0.9283 | 0.9883 | | 0.0322 | 2.0 | 1756 | 0.0404 | 0.9360 | 0.9431 | 0.9396 | 0.9897 | | 0.0185 | 3.0 | 2634 | 0.0388 | 0.9360 | 0.9458 | 0.9409 | 0.9902 | ### Framework versions - Transformers 4.6.1 - Pytorch 1.8.1+cu101 - Datasets 1.6.2 - Tokenizers 0.10.2