--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - bird_species_dataset metrics: - accuracy model-index: - name: bird_species_classifier results: - task: name: Image Classification type: image-classification dataset: name: bird_species_dataset type: bird_species_dataset config: bird_species_dataset split: train args: bird_species_dataset metrics: - name: Accuracy type: accuracy value: 0.8051042712825663 --- # bird_species_classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the bird_species_dataset dataset. It achieves the following results on the evaluation set: - Loss: 3.0432 - Accuracy: 0.8051 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 5.7612 | 1.0 | 4232 | 5.6983 | 0.6094 | | 5.2463 | 2.0 | 8464 | 5.1675 | 0.7284 | | 4.718 | 3.0 | 12696 | 4.7034 | 0.7526 | | 4.3011 | 4.0 | 16928 | 4.2762 | 0.7740 | | 3.9042 | 5.0 | 21160 | 3.9123 | 0.7867 | | 3.5981 | 6.0 | 25392 | 3.6050 | 0.7936 | | 3.328 | 7.0 | 29624 | 3.3598 | 0.8015 | | 3.164 | 8.0 | 33856 | 3.1819 | 0.8053 | | 3.0241 | 9.0 | 38088 | 3.0878 | 0.8052 | | 2.9784 | 10.0 | 42320 | 3.0420 | 0.8095 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2