--- license: mit base_model: numind/NuNER-v1.0 tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: nuner-v1_fewnerd_coarse_super results: [] --- # nuner-v1_fewnerd_coarse_super This model is a fine-tuned version of [numind/NuNER-v1.0](https://huggingface.co/numind/NuNER-v1.0) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.1433 - Precision: 0.7813 - Recall: 0.8145 - F1: 0.7976 - Accuracy: 0.9547 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1498 | 1.0 | 2059 | 0.1477 | 0.7710 | 0.8013 | 0.7859 | 0.9522 | | 0.1368 | 2.0 | 4118 | 0.1422 | 0.7797 | 0.8101 | 0.7946 | 0.9540 | | 0.1139 | 3.0 | 6177 | 0.1433 | 0.7813 | 0.8145 | 0.7976 | 0.9547 | ### Framework versions - Transformers 4.36.0 - Pytorch 2.0.0+cu117 - Datasets 2.18.0 - Tokenizers 0.15.2