---
library_name: peft
license: llama3
base_model: elyza/Llama-3-ELYZA-JP-8B
tags:
- axolotl
- generated_from_trainer
model-index:
- name: 7fe7b855-e807-4903-85d6-450f46dc46ca
results: []
---
[
](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config
axolotl version: `0.4.1`
```yaml
adapter: lora
base_model: elyza/Llama-3-ELYZA-JP-8B
bf16: auto
chat_template: llama3
dataset_prepared_path: null
datasets:
- data_files:
- cc90a04ba0c3e0ce_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/cc90a04ba0c3e0ce_train_data.json
type:
field_instruction: text
field_output: processed_text
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: auto
do_eval: true
early_stopping_patience: null
eval_batch_size: 2
eval_max_new_tokens: 128
eval_steps: null
eval_table_size: null
evals_per_epoch: null
flash_attention: true
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 4
gradient_checkpointing: true
gradient_clipping: 1.0
group_by_length: true
hub_model_id: guilxus/7fe7b855-e807-4903-85d6-450f46dc46ca
hub_repo: null
hub_strategy: end
hub_token: null
learning_rate: 0.0002
load_in_4bit: true
load_in_8bit: true
local_rank: null
logging_steps: 10
lora_alpha: 16
lora_dropout: 0.2
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 8
lora_target_linear: true
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 75GB
max_steps: 600
micro_batch_size: 2
mlflow_experiment_name: /tmp/cc90a04ba0c3e0ce_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 1
optimizer: adamw_bnb_8bit
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 150
saves_per_epoch: null
sequence_len: 1024
special_tokens:
pad_token: <|eot_id|>
strict: false
tf32: false
tokenizer_type: AutoTokenizer
train_on_inputs: false
trust_remote_code: true
val_set_size: 0.05
wandb_entity: techspear-hub
wandb_mode: online
wandb_name: 4c6492b6-3d6d-4f02-a490-0344b920ad62
wandb_project: Gradients-On-11
wandb_run: your_name
wandb_runid: 4c6492b6-3d6d-4f02-a490-0344b920ad62
warmup_steps: 5
weight_decay: 0.01
xformers_attention: null
```
# 7fe7b855-e807-4903-85d6-450f46dc46ca
This model is a fine-tuned version of [elyza/Llama-3-ELYZA-JP-8B](https://huggingface.co/elyza/Llama-3-ELYZA-JP-8B) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0743
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 5
- training_steps: 600
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:----:|:---------------:|
| 0.0444 | 0.0568 | 600 | 0.0743 |
### Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1