--- license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper_medium_finetuning_maior4s_8kh results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 26.357459011283584 --- # whisper_medium_finetuning_maior4s_8kh This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2421 - Wer: 26.3575 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.1168 | 1.0707 | 1000 | 0.1729 | 24.3127 | | 0.087 | 2.1413 | 2000 | 0.1663 | 18.2013 | | 0.058 | 3.2120 | 3000 | 0.1709 | 19.9302 | | 0.0499 | 4.2827 | 4000 | 0.1780 | 21.3661 | | 0.0336 | 5.3533 | 5000 | 0.1948 | 25.4951 | | 0.029 | 6.4240 | 6000 | 0.2105 | 27.6541 | | 0.0245 | 7.4946 | 7000 | 0.2315 | 26.5528 | | 0.0195 | 8.5653 | 8000 | 0.2421 | 26.3575 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.2.1 - Datasets 2.19.2 - Tokenizers 0.19.1