--- license: apache-2.0 base_model: guilhermebastos96/whisper-large-v2-finetuning-2 tags: - generated_from_trainer datasets: - common_voice_17_0 metrics: - wer model-index: - name: whisper-large-v2-finetuning-3 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_17_0 type: common_voice_17_0 config: pt split: None args: pt metrics: - name: Wer type: wer value: 7.925445186866588 --- # whisper-large-v2-finetuning-3 This model is a fine-tuned version of [guilhermebastos96/whisper-large-v2-finetuning-2](https://huggingface.co/guilhermebastos96/whisper-large-v2-finetuning-2) on the common_voice_17_0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2959 - Wer: 7.9254 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 10000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:-----:|:---------------:|:-------:| | 0.0365 | 0.5089 | 1000 | 0.2219 | 12.8233 | | 0.0154 | 1.0178 | 2000 | 0.2462 | 9.3545 | | 0.0255 | 1.5267 | 3000 | 0.2492 | 9.2442 | | 0.0178 | 2.0356 | 4000 | 0.2386 | 9.3401 | | 0.0121 | 2.5445 | 5000 | 0.2447 | 8.9741 | | 0.0051 | 3.0534 | 6000 | 0.2619 | 8.8478 | | 0.0034 | 3.5623 | 7000 | 0.2634 | 8.3427 | | 0.0014 | 4.0712 | 8000 | 0.2776 | 8.0597 | | 0.001 | 4.5802 | 9000 | 0.2961 | 8.0022 | | 0.0006 | 5.0891 | 10000 | 0.2959 | 7.9254 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.2.1 - Datasets 2.20.0 - Tokenizers 0.19.1