--- license: mit --- [Korean BART](https://huggingface.co/hyunwoongko/kobart) model for paraphrasing. The dataset utilized can be found on the *Files and versions* tab under the name dataset.csv. ```python import torch from transformers import BartForConditionalGeneration, AutoTokenizer device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = BartForConditionalGeneration.from_pretrained('guialfaro/korean-paraphrasing').to(device) tokenizer = AutoTokenizer.from_pretrained('guialfaro/korean-paraphrasing') sentence = "7층 방문을 위해 방문록 작성이 필요합니다." text = f"paraphrase: {sentence} " encoding = tokenizer.batch_encode_plus( [text], max_length=256, pad_to_max_length=True, truncation=True, padding="max_length", return_tensors="pt",) source_ids = encoding["input_ids"].to(device, dtype=torch.long) source_mask = encoding["attention_mask"].to(device, dtype=torch.long) generated_ids = model.generate( input_ids=source_ids, attention_mask=source_mask, max_length=150, num_beams=2, repetition_penalty=2.5, length_penalty=1.0, early_stopping=True) preds = [tokenizer.decode(g, skip_special_tokens=True, clean_up_tokenization_spaces=True) for g in generated_ids] print(f"Original Sentence :: {sentence}") print(f"Paraphrased Sentence :: {preds[0]}") ```