{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fb461839440>"}, "verbose": 1, "policy_kwargs": {":type:": "", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1686618247629747587, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAACrDET8L6gY/UDKnvQhElT3M4pM+sCwNP9UWOT+0MCa/Hc24v+x8nr7k97Q/GaJSv5FT0byVNrE+TTAqv6t86rxZK0M+oTARv8cCFz+8vY69/kGXvo4dM7/Vaqo+o92WvrbHZr9/yBE/WtOOPkFFKT8yOIe/pRAqv1FYXz+q3P6/u8XTv3sTsr5mdzO++xZlP/c8Zj4V1ci9b9UOv/h7HD+yRyO/XIYUv7K/hz5nIz4+cN5uP9U/HL/EmOU+Sc4WQAu4Lj4mHLO+lWJsvwvDzjzr/I0/f8gRPzltZcBBRSk/1OA1vnlRlT4yHE8+QGCpPSHHZL7uj0s/Q0fSPZ0k7b5HXWC/u6GQvEm4bT+KcIc/CPyCv8arOz9jXhu+LmOOvhz0VD6Gqcg+L+YVP/dshTwprMk/l2GkvmloOj/zUMQ+6/yNP3/IET9a044+QUUpPzXoYT+g3Au+RKcUPyylED+PR/w+SvswvkbQST9tMky/5ZW5vw/9Rj7kXxm/BFahv4kfWD8pMiw+YZGFvgmGgLuQeCE/SQGUvneI3T4bt92+FDyAvymMnb4TU0M+vqwEv7bHZr9/yBE/WtOOPkFFKT+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAABH68MzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAwmHPPQAAAADshea/AAAAADnKGbwAAAAABiPtPwAAAAB19OQ9AAAAAFJg4T8AAAAAphmtuwAAAADAl92/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABgWLNgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIxDcbwAAAAATvHhvwAAAACnfM68AAAAAMg/9D8AAAAA6jmrPQAAAAAmJd8/AAAAAKgp5b0AAAAASm7yvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAIYKtTYAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIDTWAW+AAAAALnN/78AAAAAuinNvQAAAAB0z+Y/AAAAANZeyT0AAAAA2Xz0PwAAAACYRs69AAAAAPb3+r8AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACj4nKzAACAPwAAAAAAAAAAAAAAAAAAAAAAAACAHrXIvAAAAAAmGfS/AAAAADXrCr0AAAAAMPL7PwAAAABOZGW9AAAAAJ328T8AAAAAjuGFvQAAAABBUdy/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJs57HS4OMGMAWyUTegDjAF0lEdArogzSLIgeXV9lChoBkdAj9m0snRb8mgHTegDaAhHQK6JqLZzxPR1fZQoaAZHQJXKLB42S+xoB03oA2gIR0Culfy3b212dX2UKGgGR0CQLfGKyfL+aAdN6ANoCEdArpiyVGCqZXV9lChoBkdAjrqM3Q2MsGgHTegDaAhHQK6cBeBxxT91fZQoaAZHQIkp8+zMRpVoB03oA2gIR0CunPzch1TzdX2UKGgGR0CKQ320zCUHaAdN6ANoCEdArqUdk6Lfk3V9lChoBkdAjr/B7eEZi2gHTegDaAhHQK6nu8Yht+F1fZQoaAZHQImogoXsPatoB03oA2gIR0CurE9BSk0rdX2UKGgGR0CGJ7NliBoVaAdN6ANoCEdArq3PaN+9anV9lChoBkdAh/HriMo+fWgHTegDaAhHQK65ZVG0/np1fZQoaAZHQIaB7CSA6MloB03oA2gIR0CuvAp17pmmdX2UKGgGR0CIRn3g1m8NaAdN6ANoCEdArr9iVGCqZXV9lChoBkdAiZCBKlHjImgHTegDaAhHQK7AX3u/k/91fZQoaAZHQJFJaO/+Kj1oB03oA2gIR0CuyJQ+dK/VdX2UKGgGR0CR9RJp35eraAdN6ANoCEdArsvVOIqLCXV9lChoBkdAjPlv2PDHfmgHTegDaAhHQK7Qrh86V+t1fZQoaAZHQJeLv1WbPQhoB03oA2gIR0Cu0jifHxSYdX2UKGgGR0CMSWRHPNVzaAdN6ANoCEdArtxJflZHNHV9lChoBkdAipuN4zJp4GgHTegDaAhHQK7e+CFK02N1fZQoaAZHQIm2XObAk9loB03oA2gIR0Cu4k+1rqMWdX2UKGgGR0CMJcNWluWKaAdN6ANoCEdAruNRIMBp6HV9lChoBkdAikER9gF5fWgHTegDaAhHQK7sAXN1QqJ1fZQoaAZHQIfahnBciW5oB03oA2gIR0Cu7//2bobGdX2UKGgGR0CIvlIwudwvaAdN6ANoCEdArvUeSOinHnV9lChoBkdAiH6UIC2c8WgHTegDaAhHQK72qMfigkF1fZQoaAZHQIlLI7kn1FpoB03oA2gIR0Cu/0/336AOdX2UKGgGR0COtrLJSzgNaAdN6ANoCEdArwHext52QnV9lChoBkdAjaNOk+HJtGgHTegDaAhHQK8FKG7Bfrt1fZQoaAZHQJIamnDR+jNoB03oA2gIR0CvBiQWWQfZdX2UKGgGR0CPG0F4cFQmaAdN6ANoCEdArw+lEiMYM3V9lChoBkdAjISJhOP/72gHTegDaAhHQK8T00iQkop1fZQoaAZHQIrKwo9cKPZoB03oA2gIR0CvGS6ij+JhdX2UKGgGR0CVWw7p3X7MaAdN6ANoCEdArxpljy4FzXV9lChoBkdAjBjEbgjyF2gHTegDaAhHQK8iVaTwDvF1fZQoaAZHQJjXsYuTRploB03oA2gIR0CvJNdeY2KmdX2UKGgGR0CY4RwL3K0VaAdN6ANoCEdArygKJTER8XV9lChoBkdAl2MPKp1ifGgHTegDaAhHQK8o/60pmVZ1fZQoaAZHQI6h+JSBK+VoB03oA2gIR0CvMo/Z26kJdX2UKGgGR0CUCPjKgZjyaAdN6ANoCEdArzbUCo0hvHV9lChoBkdAluFfnOjZc2gHTegDaAhHQK87zWmP5pJ1fZQoaAZHQJnRYju8brFoB03oA2gIR0CvPL8SwnpjdX2UKGgGR0CaUPsqril0aAdN6ANoCEdAr0TSMHbAUXV9lChoBkdAmwRR7RfF72gHTegDaAhHQK9HUk9ECvJ1fZQoaAZHQJzf6pYLb6BoB03oA2gIR0CvSn16u4gBdX2UKGgGR0CcC37P6be/aAdN6ANoCEdAr0tzL4etCHV9lChoBkdAnK2HirDIimgHTegDaAhHQK9VQt1ZDAt1fZQoaAZHQJxm/JYDDCRoB03oA2gIR0CvWXanrIHUdX2UKGgGR0CVNtoTwlSkaAdN6ANoCEdAr137or4FinV9lChoBkdAnK8el41P32gHTegDaAhHQK9e9hw2l2x1fZQoaAZHQJ3Mj+rELploB03oA2gIR0CvZx0HQhOhdX2UKGgGR0CeBFE7GNrCaAdN6ANoCEdAr2m2e4Cp33V9lChoBkdAnTZpokAxSGgHTegDaAhHQK9tCOcUdrB1fZQoaAZHQJ5AbeXRgJFoB03oA2gIR0CvbfO+7Dl6dX2UKGgGR0CW8wUExIrfaAdN6ANoCEdAr3h/BrN4aHV9lChoBkdAmuJ4lyBClmgHTegDaAhHQK98mfRu0kZ1fZQoaAZHQJhK3zd1uBNoB03oA2gIR0CvgCbaRISUdX2UKGgGR0CdEKnO0LMLaAdN6ANoCEdAr4Eip3os7XV9lChoBkdAm27tqtYCAGgHTegDaAhHQK+JVdQfp2V1fZQoaAZHQJ2pYFqzqr1oB03oA2gIR0Cvi/ZEUj9odX2UKGgGR0Cds5WeHzpYaAdN6ANoCEdAr48zN+so2HV9lChoBkdAnDaGO2iL22gHTegDaAhHQK+QMTibUgB1fZQoaAZHQJ0DMWKuSwJoB03oA2gIR0Cvm8DgIhQndX2UKGgGR0Cd7d+fRNRFaAdN6ANoCEdAr5+IJHAh0XV9lChoBkdAnWZnl0YCQ2gHTegDaAhHQK+itiqABkt1fZQoaAZHQJv5q4lQdjpoB03oA2gIR0Cvo6HTRYzSdX2UKGgGR0CbdtbEP1+RaAdN6ANoCEdAr6uD0L+glHV9lChoBkdAmzDnD3ueBmgHTegDaAhHQK+uGGNaQmx1fZQoaAZHQJuxtFH8TBZoB03oA2gIR0CvsXNcv/R3dX2UKGgGR0CdT4JJoTPCaAdN6ANoCEdAr7JrFVDKHXV9lChoBkdAnaDDpTuOTGgHTegDaAhHQK++x1FpfyB1fZQoaAZHQJ06gUZeiSJoB03oA2gIR0CvwfmWldkbdX2UKGgGR0CdJHFbmlqKaAdN6ANoCEdAr8UkAiml7HV9lChoBkdAnm51+qioKmgHTegDaAhHQK/GFVNpM6B1fZQoaAZHQJtPJ0/4ZdhoB03oA2gIR0Cvzf3AVO9GdX2UKGgGR0Cdy0wPAfuDaAdN6ANoCEdAr9CRI4EOiHV9lChoBkdAoARARh+fAmgHTegDaAhHQK/TwpMHryF1fZQoaAZHQJ4WwJKJ2uBoB03oA2gIR0Cv1NmmUGFBdX2UKGgGR0Cbs6Gm1pj+aAdN6ANoCEdAr+G4ckt293V9lChoBkdAmQ/HJcPe6GgHTegDaAhHQK/ksBsANod1fZQoaAZHQJlaaRp1zQxoB03oA2gIR0Cv5/qkVN5/dX2UKGgGR0CfWXWMCLdfaAdN6ANoCEdAr+j4o5PuX3V9lChoBkdAoBJ5COWBz2gHTegDaAhHQK/w0/Glyip1fZQoaAZHQJ7fGyOaOPxoB03oA2gIR0Cv80vsRg7YdX2UKGgGR0CeQQgTh5xBaAdN6ANoCEdAr/aRreqJdnV9lChoBkdAnbCMmjTKDGgHTegDaAhHQK/3/bWVeKN1fZQoaAZHQJw3IzTF2mpoB03oA2gIR0CwAicdYGMXdX2UKGgGR0CfS4MfRu0kaAdN6ANoCEdAsAN4kt29tnV9lChoBkdAmRx8i8nNPmgHTegDaAhHQLAFGG+sYEZ1fZQoaAZHQJ3h658Sf19oB03oA2gIR0CwBZLqQiiZdX2UKGgGR0CaW0t/FzdUaAdN6ANoCEdAsAmqveP7vXV9lChoBkdAnLo7G3nZCmgHTegDaAhHQLAK+RaX8fp1fZQoaAZHQJuBr6CUX55oB03oA2gIR0CwDONgF5fMdX2UKGgGR0Cb8hTrE9+xaAdN6ANoCEdAsA2T7wazeHV9lChoBkdAmLPRxHXmNmgHTegDaAhHQLATO55qubJ1fZQoaAZHQJpOaBczImxoB03oA2gIR0CwFIKHCXQddX2UKGgGR0CaOtBdD6WPaAdN6ANoCEdAsBYqwosqa3V9lChoBkdAmXho5PuXu2gHTegDaAhHQLAWqXLNfPZ1fZQoaAZHQJI1JzNliBpoB03oA2gIR0CwGs9/J/5MdX2UKGgGR0CVJ7xHoX9BaAdN6ANoCEdAsBwobbUPQXVlLg=="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}