--- library_name: transformers license: apache-2.0 base_model: google/vit-large-patch16-224-in21k tags: - image-classification - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: vit-large-patch16-224-in21k-dungeon-geo-morphs-0-4-30Nov24-002 results: - task: name: Image Classification type: image-classification dataset: name: dungeon-geo-morphs type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.9660714285714286 --- # vit-large-patch16-224-in21k-dungeon-geo-morphs-0-4-30Nov24-002 This model is a fine-tuned version of [google/vit-large-patch16-224-in21k](https://huggingface.co/google/vit-large-patch16-224-in21k) on the dungeon-geo-morphs dataset. It achieves the following results on the evaluation set: - Loss: 0.2581 - Accuracy: 0.9661 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-------:|:----:|:---------------:|:--------:| | 1.517 | 3.9091 | 10 | 1.3386 | 0.6768 | | 0.8959 | 7.9091 | 20 | 0.8879 | 0.9089 | | 0.4053 | 11.9091 | 30 | 0.5939 | 0.9375 | | 0.173 | 15.9091 | 40 | 0.4381 | 0.95 | | 0.0766 | 19.9091 | 50 | 0.3394 | 0.9589 | | 0.0395 | 23.9091 | 60 | 0.2854 | 0.9643 | | 0.0243 | 27.9091 | 70 | 0.2581 | 0.9661 | | 0.0186 | 31.9091 | 80 | 0.2486 | 0.9661 | ### Framework versions - Transformers 4.46.2 - Pytorch 2.5.1+cu121 - Datasets 3.1.0 - Tokenizers 0.20.3