--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_image_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.6 --- # emotion_image_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.1587 - Accuracy: 0.6 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 54 | 1.6922 | 0.2875 | | No log | 2.0 | 108 | 1.4183 | 0.4688 | | No log | 3.0 | 162 | 1.3431 | 0.4437 | | No log | 4.0 | 216 | 1.1979 | 0.5437 | | No log | 5.0 | 270 | 1.1368 | 0.6188 | | No log | 6.0 | 324 | 1.1457 | 0.5875 | | No log | 7.0 | 378 | 1.1509 | 0.575 | | No log | 8.0 | 432 | 1.1037 | 0.5938 | | No log | 9.0 | 486 | 1.1060 | 0.575 | | 1.1174 | 10.0 | 540 | 1.1083 | 0.5938 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2