graphcore-rahult's picture
update model card README.md
1e9c599
|
raw
history blame
1.88 kB
metadata
license: apache-2.0
tags:
  - generated_from_trainer
datasets:
  - conll2003
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased-finetuned-ner
    results: []

bert-base-uncased-finetuned-ner

This model is a fine-tuned version of bert-base-uncased on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0616
  • Precision: 0.9217
  • Recall: 0.9375
  • F1: 0.9295
  • Accuracy: 0.9837

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: IPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • total_eval_batch_size: 5
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 3
  • training precision: Mixed Precision

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0813 1.0 877 0.0659 0.9113 0.9206 0.9159 0.9812
0.0567 2.0 1754 0.0635 0.9194 0.9351 0.9272 0.9828
0.0151 3.0 2631 0.0616 0.9217 0.9375 0.9295 0.9837

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.10.0+cpu
  • Datasets 2.7.1
  • Tokenizers 0.12.1