--- tags: - autotrain - tabular - classification - tabular-classification datasets: - dozata/autotrain-data-petfinder-demo co2_eq_emissions: emissions: 0.49257909869639516 --- # Model Trained Using AutoTrain - Problem type: Multi-class Classification - Model ID: 87059143318 - CO2 Emissions (in grams): 0.4926 ## Validation Metrics - Loss: 4.209 - Accuracy: 0.033 - Macro F1: 0.003 - Micro F1: 0.033 - Weighted F1: 0.010 - Macro Precision: 0.003 - Micro Precision: 0.033 - Weighted Precision: 0.008 - Macro Recall: 0.011 - Micro Recall: 0.033 - Weighted Recall: 0.033 ## Usage ```python import json import joblib import pandas as pd model = joblib.load('model.joblib') config = json.load(open('config.json')) features = config['features'] # data = pd.read_csv("data.csv") data = data[features] data.columns = ["feat_" + str(col) for col in data.columns] predictions = model.predict(data) # or model.predict_proba(data) ```