diff --git "a/final/trainer_log.jsonl" "b/final/trainer_log.jsonl" new file mode 100644--- /dev/null +++ "b/final/trainer_log.jsonl" @@ -0,0 +1,1623 @@ +{"current_steps": 1, "total_steps": 1622, "loss": 1.9036, "learning_rate": 1.226993865030675e-07, "epoch": 0.0006163328197226503, "percentage": 0.06, "elapsed_time": "0:00:11", "remaining_time": "5:13:38"} +{"current_steps": 2, "total_steps": 1622, "loss": 1.9255, "learning_rate": 2.45398773006135e-07, "epoch": 0.0012326656394453005, "percentage": 0.12, "elapsed_time": "0:00:23", "remaining_time": "5:12:36"} +{"current_steps": 3, "total_steps": 1622, "loss": 1.9242, "learning_rate": 3.680981595092025e-07, "epoch": 0.0018489984591679508, "percentage": 0.18, "elapsed_time": "0:00:34", "remaining_time": "5:08:51"} +{"current_steps": 4, "total_steps": 1622, "loss": 1.9527, "learning_rate": 4.9079754601227e-07, "epoch": 0.002465331278890601, "percentage": 0.25, "elapsed_time": "0:00:45", "remaining_time": "5:07:02"} +{"current_steps": 5, "total_steps": 1622, "loss": 1.898, "learning_rate": 6.134969325153375e-07, "epoch": 0.0030816640986132513, "percentage": 0.31, "elapsed_time": "0:00:56", "remaining_time": "5:05:53"} +{"current_steps": 6, "total_steps": 1622, "loss": 1.9389, "learning_rate": 7.36196319018405e-07, "epoch": 0.0036979969183359015, "percentage": 0.37, "elapsed_time": "0:01:08", "remaining_time": "5:05:23"} +{"current_steps": 7, "total_steps": 1622, "loss": 1.9287, "learning_rate": 8.588957055214725e-07, "epoch": 0.004314329738058551, "percentage": 0.43, "elapsed_time": "0:01:19", "remaining_time": "5:06:23"} +{"current_steps": 8, "total_steps": 1622, "loss": 1.9146, "learning_rate": 9.8159509202454e-07, "epoch": 0.004930662557781202, "percentage": 0.49, "elapsed_time": "0:01:30", "remaining_time": "5:05:37"} +{"current_steps": 9, "total_steps": 1622, "loss": 1.8543, "learning_rate": 1.1042944785276075e-06, "epoch": 0.005546995377503852, "percentage": 0.55, "elapsed_time": "0:01:42", "remaining_time": "5:06:22"} +{"current_steps": 10, "total_steps": 1622, "loss": 1.8408, "learning_rate": 1.226993865030675e-06, "epoch": 0.0061633281972265025, "percentage": 0.62, "elapsed_time": "0:01:53", "remaining_time": "5:05:42"} +{"current_steps": 11, "total_steps": 1622, "loss": 1.8958, "learning_rate": 1.3496932515337425e-06, "epoch": 0.006779661016949152, "percentage": 0.68, "elapsed_time": "0:02:05", "remaining_time": "5:05:30"} +{"current_steps": 12, "total_steps": 1622, "loss": 1.848, "learning_rate": 1.47239263803681e-06, "epoch": 0.007395993836671803, "percentage": 0.74, "elapsed_time": "0:02:16", "remaining_time": "5:04:59"} +{"current_steps": 13, "total_steps": 1622, "loss": 1.7819, "learning_rate": 1.5950920245398775e-06, "epoch": 0.008012326656394453, "percentage": 0.8, "elapsed_time": "0:02:28", "remaining_time": "5:05:23"} +{"current_steps": 14, "total_steps": 1622, "loss": 1.8899, "learning_rate": 1.717791411042945e-06, "epoch": 0.008628659476117103, "percentage": 0.86, "elapsed_time": "0:02:39", "remaining_time": "5:04:58"} +{"current_steps": 15, "total_steps": 1622, "loss": 1.7977, "learning_rate": 1.8404907975460124e-06, "epoch": 0.009244992295839754, "percentage": 0.92, "elapsed_time": "0:02:50", "remaining_time": "5:04:32"} +{"current_steps": 16, "total_steps": 1622, "loss": 1.8153, "learning_rate": 1.96319018404908e-06, "epoch": 0.009861325115562404, "percentage": 0.99, "elapsed_time": "0:03:02", "remaining_time": "5:04:51"} +{"current_steps": 17, "total_steps": 1622, "loss": 1.8357, "learning_rate": 2.085889570552147e-06, "epoch": 0.010477657935285054, "percentage": 1.05, "elapsed_time": "0:03:13", "remaining_time": "5:04:24"} +{"current_steps": 18, "total_steps": 1622, "loss": 1.7938, "learning_rate": 2.208588957055215e-06, "epoch": 0.011093990755007704, "percentage": 1.11, "elapsed_time": "0:03:24", "remaining_time": "5:03:59"} +{"current_steps": 19, "total_steps": 1622, "loss": 1.8035, "learning_rate": 2.331288343558282e-06, "epoch": 0.011710323574730355, "percentage": 1.17, "elapsed_time": "0:03:36", "remaining_time": "5:04:12"} +{"current_steps": 20, "total_steps": 1622, "loss": 1.7529, "learning_rate": 2.45398773006135e-06, "epoch": 0.012326656394453005, "percentage": 1.23, "elapsed_time": "0:03:47", "remaining_time": "5:03:48"} +{"current_steps": 21, "total_steps": 1622, "loss": 1.7743, "learning_rate": 2.5766871165644175e-06, "epoch": 0.012942989214175655, "percentage": 1.29, "elapsed_time": "0:03:58", "remaining_time": "5:03:26"} +{"current_steps": 22, "total_steps": 1622, "loss": 1.7018, "learning_rate": 2.699386503067485e-06, "epoch": 0.013559322033898305, "percentage": 1.36, "elapsed_time": "0:04:10", "remaining_time": "5:03:36"} +{"current_steps": 23, "total_steps": 1622, "loss": 1.7139, "learning_rate": 2.822085889570552e-06, "epoch": 0.014175654853620955, "percentage": 1.42, "elapsed_time": "0:04:21", "remaining_time": "5:03:13"} +{"current_steps": 24, "total_steps": 1622, "loss": 1.7585, "learning_rate": 2.94478527607362e-06, "epoch": 0.014791987673343606, "percentage": 1.48, "elapsed_time": "0:04:33", "remaining_time": "5:03:22"} +{"current_steps": 25, "total_steps": 1622, "loss": 1.7924, "learning_rate": 3.0674846625766875e-06, "epoch": 0.015408320493066256, "percentage": 1.54, "elapsed_time": "0:04:44", "remaining_time": "5:03:08"} +{"current_steps": 26, "total_steps": 1622, "loss": 1.7795, "learning_rate": 3.190184049079755e-06, "epoch": 0.016024653312788906, "percentage": 1.6, "elapsed_time": "0:04:56", "remaining_time": "5:02:54"} +{"current_steps": 27, "total_steps": 1622, "loss": 1.6757, "learning_rate": 3.312883435582822e-06, "epoch": 0.016640986132511557, "percentage": 1.66, "elapsed_time": "0:05:08", "remaining_time": "5:03:36"} +{"current_steps": 28, "total_steps": 1622, "loss": 1.7308, "learning_rate": 3.43558282208589e-06, "epoch": 0.017257318952234205, "percentage": 1.73, "elapsed_time": "0:05:19", "remaining_time": "5:03:23"} +{"current_steps": 29, "total_steps": 1622, "loss": 1.7481, "learning_rate": 3.5582822085889574e-06, "epoch": 0.017873651771956857, "percentage": 1.79, "elapsed_time": "0:05:30", "remaining_time": "5:03:00"} +{"current_steps": 30, "total_steps": 1622, "loss": 1.7174, "learning_rate": 3.680981595092025e-06, "epoch": 0.01848998459167951, "percentage": 1.85, "elapsed_time": "0:05:42", "remaining_time": "5:02:39"} +{"current_steps": 31, "total_steps": 1622, "loss": 1.746, "learning_rate": 3.8036809815950928e-06, "epoch": 0.019106317411402157, "percentage": 1.91, "elapsed_time": "0:05:53", "remaining_time": "5:02:43"} +{"current_steps": 32, "total_steps": 1622, "loss": 1.6782, "learning_rate": 3.92638036809816e-06, "epoch": 0.019722650231124808, "percentage": 1.97, "elapsed_time": "0:06:05", "remaining_time": "5:02:22"} +{"current_steps": 33, "total_steps": 1622, "loss": 1.6995, "learning_rate": 4.049079754601227e-06, "epoch": 0.020338983050847456, "percentage": 2.03, "elapsed_time": "0:06:16", "remaining_time": "5:02:23"} +{"current_steps": 34, "total_steps": 1622, "loss": 1.7914, "learning_rate": 4.171779141104294e-06, "epoch": 0.020955315870570108, "percentage": 2.1, "elapsed_time": "0:06:28", "remaining_time": "5:02:08"} +{"current_steps": 35, "total_steps": 1622, "loss": 1.7081, "learning_rate": 4.294478527607362e-06, "epoch": 0.02157164869029276, "percentage": 2.16, "elapsed_time": "0:06:39", "remaining_time": "5:01:48"} +{"current_steps": 36, "total_steps": 1622, "loss": 1.7081, "learning_rate": 4.41717791411043e-06, "epoch": 0.022187981510015407, "percentage": 2.22, "elapsed_time": "0:06:51", "remaining_time": "5:01:48"} +{"current_steps": 37, "total_steps": 1622, "loss": 1.7096, "learning_rate": 4.539877300613497e-06, "epoch": 0.02280431432973806, "percentage": 2.28, "elapsed_time": "0:07:02", "remaining_time": "5:01:31"} +{"current_steps": 38, "total_steps": 1622, "loss": 1.6818, "learning_rate": 4.662576687116564e-06, "epoch": 0.02342064714946071, "percentage": 2.34, "elapsed_time": "0:07:13", "remaining_time": "5:01:28"} +{"current_steps": 39, "total_steps": 1622, "loss": 1.7492, "learning_rate": 4.785276073619632e-06, "epoch": 0.02403697996918336, "percentage": 2.4, "elapsed_time": "0:07:25", "remaining_time": "5:01:14"} +{"current_steps": 40, "total_steps": 1622, "loss": 1.6338, "learning_rate": 4.9079754601227e-06, "epoch": 0.02465331278890601, "percentage": 2.47, "elapsed_time": "0:07:36", "remaining_time": "5:00:55"} +{"current_steps": 41, "total_steps": 1622, "loss": 1.6887, "learning_rate": 5.030674846625767e-06, "epoch": 0.025269645608628658, "percentage": 2.53, "elapsed_time": "0:07:47", "remaining_time": "5:00:37"} +{"current_steps": 42, "total_steps": 1622, "loss": 1.7415, "learning_rate": 5.153374233128835e-06, "epoch": 0.02588597842835131, "percentage": 2.59, "elapsed_time": "0:07:59", "remaining_time": "5:00:35"} +{"current_steps": 43, "total_steps": 1622, "loss": 1.7461, "learning_rate": 5.276073619631902e-06, "epoch": 0.02650231124807396, "percentage": 2.65, "elapsed_time": "0:08:10", "remaining_time": "5:00:17"} +{"current_steps": 44, "total_steps": 1622, "loss": 1.7016, "learning_rate": 5.39877300613497e-06, "epoch": 0.02711864406779661, "percentage": 2.71, "elapsed_time": "0:08:21", "remaining_time": "4:59:59"} +{"current_steps": 45, "total_steps": 1622, "loss": 1.6927, "learning_rate": 5.521472392638038e-06, "epoch": 0.02773497688751926, "percentage": 2.77, "elapsed_time": "0:08:33", "remaining_time": "4:59:41"} +{"current_steps": 46, "total_steps": 1622, "loss": 1.6271, "learning_rate": 5.644171779141104e-06, "epoch": 0.02835130970724191, "percentage": 2.84, "elapsed_time": "0:08:44", "remaining_time": "4:59:27"} +{"current_steps": 47, "total_steps": 1622, "loss": 1.6789, "learning_rate": 5.766871165644172e-06, "epoch": 0.02896764252696456, "percentage": 2.9, "elapsed_time": "0:08:57", "remaining_time": "5:00:13"} +{"current_steps": 48, "total_steps": 1622, "loss": 1.7316, "learning_rate": 5.88957055214724e-06, "epoch": 0.029583975346687212, "percentage": 2.96, "elapsed_time": "0:09:08", "remaining_time": "4:59:55"} +{"current_steps": 49, "total_steps": 1622, "loss": 1.6765, "learning_rate": 6.012269938650307e-06, "epoch": 0.03020030816640986, "percentage": 3.02, "elapsed_time": "0:09:20", "remaining_time": "4:59:37"} +{"current_steps": 50, "total_steps": 1622, "loss": 1.6997, "learning_rate": 6.134969325153375e-06, "epoch": 0.030816640986132512, "percentage": 3.08, "elapsed_time": "0:09:31", "remaining_time": "4:59:36"} +{"current_steps": 51, "total_steps": 1622, "loss": 1.7689, "learning_rate": 6.257668711656443e-06, "epoch": 0.03143297380585516, "percentage": 3.14, "elapsed_time": "0:09:57", "remaining_time": "5:06:53"} +{"current_steps": 52, "total_steps": 1622, "loss": 1.7202, "learning_rate": 6.38036809815951e-06, "epoch": 0.03204930662557781, "percentage": 3.21, "elapsed_time": "0:10:08", "remaining_time": "5:06:26"} +{"current_steps": 53, "total_steps": 1622, "loss": 1.6652, "learning_rate": 6.503067484662578e-06, "epoch": 0.03266563944530046, "percentage": 3.27, "elapsed_time": "0:10:20", "remaining_time": "5:06:13"} +{"current_steps": 54, "total_steps": 1622, "loss": 1.6977, "learning_rate": 6.625766871165644e-06, "epoch": 0.033281972265023115, "percentage": 3.33, "elapsed_time": "0:10:31", "remaining_time": "5:05:47"} +{"current_steps": 55, "total_steps": 1622, "loss": 1.6672, "learning_rate": 6.748466257668712e-06, "epoch": 0.03389830508474576, "percentage": 3.39, "elapsed_time": "0:10:43", "remaining_time": "5:05:35"} +{"current_steps": 56, "total_steps": 1622, "loss": 1.685, "learning_rate": 6.87116564417178e-06, "epoch": 0.03451463790446841, "percentage": 3.45, "elapsed_time": "0:10:54", "remaining_time": "5:05:11"} +{"current_steps": 57, "total_steps": 1622, "loss": 1.7066, "learning_rate": 6.993865030674847e-06, "epoch": 0.035130970724191066, "percentage": 3.51, "elapsed_time": "0:11:06", "remaining_time": "5:04:47"} +{"current_steps": 58, "total_steps": 1622, "loss": 1.6552, "learning_rate": 7.116564417177915e-06, "epoch": 0.035747303543913714, "percentage": 3.58, "elapsed_time": "0:11:17", "remaining_time": "5:04:35"} +{"current_steps": 59, "total_steps": 1622, "loss": 1.7241, "learning_rate": 7.239263803680983e-06, "epoch": 0.03636363636363636, "percentage": 3.64, "elapsed_time": "0:11:28", "remaining_time": "5:04:11"} +{"current_steps": 60, "total_steps": 1622, "loss": 1.7291, "learning_rate": 7.36196319018405e-06, "epoch": 0.03697996918335902, "percentage": 3.7, "elapsed_time": "0:11:40", "remaining_time": "5:03:48"} +{"current_steps": 61, "total_steps": 1622, "loss": 1.7077, "learning_rate": 7.484662576687118e-06, "epoch": 0.037596302003081665, "percentage": 3.76, "elapsed_time": "0:11:51", "remaining_time": "5:03:25"} +{"current_steps": 62, "total_steps": 1622, "loss": 1.6846, "learning_rate": 7.6073619631901856e-06, "epoch": 0.03821263482280431, "percentage": 3.82, "elapsed_time": "0:12:02", "remaining_time": "5:03:02"} +{"current_steps": 63, "total_steps": 1622, "loss": 1.6772, "learning_rate": 7.730061349693252e-06, "epoch": 0.03882896764252696, "percentage": 3.88, "elapsed_time": "0:12:13", "remaining_time": "5:02:41"} +{"current_steps": 64, "total_steps": 1622, "loss": 1.6796, "learning_rate": 7.85276073619632e-06, "epoch": 0.039445300462249616, "percentage": 3.95, "elapsed_time": "0:12:25", "remaining_time": "5:02:22"} +{"current_steps": 65, "total_steps": 1622, "loss": 1.7265, "learning_rate": 7.975460122699386e-06, "epoch": 0.040061633281972264, "percentage": 4.01, "elapsed_time": "0:12:36", "remaining_time": "5:02:00"} +{"current_steps": 66, "total_steps": 1622, "loss": 1.6891, "learning_rate": 8.098159509202455e-06, "epoch": 0.04067796610169491, "percentage": 4.07, "elapsed_time": "0:12:47", "remaining_time": "5:01:39"} +{"current_steps": 67, "total_steps": 1622, "loss": 1.6341, "learning_rate": 8.220858895705522e-06, "epoch": 0.04129429892141757, "percentage": 4.13, "elapsed_time": "0:12:58", "remaining_time": "5:01:18"} +{"current_steps": 68, "total_steps": 1622, "loss": 1.6611, "learning_rate": 8.343558282208589e-06, "epoch": 0.041910631741140215, "percentage": 4.19, "elapsed_time": "0:13:10", "remaining_time": "5:01:00"} +{"current_steps": 69, "total_steps": 1622, "loss": 1.7486, "learning_rate": 8.466257668711658e-06, "epoch": 0.042526964560862864, "percentage": 4.25, "elapsed_time": "0:13:21", "remaining_time": "5:00:49"} +{"current_steps": 70, "total_steps": 1622, "loss": 1.6599, "learning_rate": 8.588957055214725e-06, "epoch": 0.04314329738058552, "percentage": 4.32, "elapsed_time": "0:13:33", "remaining_time": "5:00:29"} +{"current_steps": 71, "total_steps": 1622, "loss": 1.6858, "learning_rate": 8.711656441717792e-06, "epoch": 0.04375963020030817, "percentage": 4.38, "elapsed_time": "0:13:44", "remaining_time": "5:00:10"} +{"current_steps": 72, "total_steps": 1622, "loss": 1.6938, "learning_rate": 8.83435582822086e-06, "epoch": 0.044375963020030815, "percentage": 4.44, "elapsed_time": "0:13:56", "remaining_time": "4:59:59"} +{"current_steps": 73, "total_steps": 1622, "loss": 1.6399, "learning_rate": 8.957055214723927e-06, "epoch": 0.04499229583975347, "percentage": 4.5, "elapsed_time": "0:14:07", "remaining_time": "4:59:39"} +{"current_steps": 74, "total_steps": 1622, "loss": 1.6061, "learning_rate": 9.079754601226994e-06, "epoch": 0.04560862865947612, "percentage": 4.56, "elapsed_time": "0:14:18", "remaining_time": "4:59:20"} +{"current_steps": 75, "total_steps": 1622, "loss": 1.6564, "learning_rate": 9.202453987730062e-06, "epoch": 0.046224961479198766, "percentage": 4.62, "elapsed_time": "0:14:29", "remaining_time": "4:59:01"} +{"current_steps": 76, "total_steps": 1622, "loss": 1.5832, "learning_rate": 9.325153374233129e-06, "epoch": 0.04684129429892142, "percentage": 4.69, "elapsed_time": "0:14:41", "remaining_time": "4:58:41"} +{"current_steps": 77, "total_steps": 1622, "loss": 1.6375, "learning_rate": 9.447852760736197e-06, "epoch": 0.04745762711864407, "percentage": 4.75, "elapsed_time": "0:14:52", "remaining_time": "4:58:23"} +{"current_steps": 78, "total_steps": 1622, "loss": 1.6495, "learning_rate": 9.570552147239264e-06, "epoch": 0.04807395993836672, "percentage": 4.81, "elapsed_time": "0:15:05", "remaining_time": "4:58:36"} +{"current_steps": 79, "total_steps": 1622, "loss": 1.6093, "learning_rate": 9.693251533742331e-06, "epoch": 0.048690292758089365, "percentage": 4.87, "elapsed_time": "0:15:16", "remaining_time": "4:58:16"} +{"current_steps": 80, "total_steps": 1622, "loss": 1.5864, "learning_rate": 9.8159509202454e-06, "epoch": 0.04930662557781202, "percentage": 4.93, "elapsed_time": "0:15:27", "remaining_time": "4:57:58"} +{"current_steps": 81, "total_steps": 1622, "loss": 1.6495, "learning_rate": 9.938650306748467e-06, "epoch": 0.04992295839753467, "percentage": 4.99, "elapsed_time": "0:15:38", "remaining_time": "4:57:39"} +{"current_steps": 82, "total_steps": 1622, "loss": 1.6332, "learning_rate": 1.0061349693251534e-05, "epoch": 0.050539291217257316, "percentage": 5.06, "elapsed_time": "0:15:50", "remaining_time": "4:57:23"} +{"current_steps": 83, "total_steps": 1622, "loss": 1.687, "learning_rate": 1.0184049079754601e-05, "epoch": 0.05115562403697997, "percentage": 5.12, "elapsed_time": "0:16:01", "remaining_time": "4:57:05"} +{"current_steps": 84, "total_steps": 1622, "loss": 1.6079, "learning_rate": 1.030674846625767e-05, "epoch": 0.05177195685670262, "percentage": 5.18, "elapsed_time": "0:16:12", "remaining_time": "4:56:48"} +{"current_steps": 85, "total_steps": 1622, "loss": 1.633, "learning_rate": 1.0429447852760737e-05, "epoch": 0.05238828967642527, "percentage": 5.24, "elapsed_time": "0:16:24", "remaining_time": "4:56:38"} +{"current_steps": 86, "total_steps": 1622, "loss": 1.6778, "learning_rate": 1.0552147239263804e-05, "epoch": 0.05300462249614792, "percentage": 5.3, "elapsed_time": "0:16:35", "remaining_time": "4:56:20"} +{"current_steps": 87, "total_steps": 1622, "loss": 1.6767, "learning_rate": 1.0674846625766873e-05, "epoch": 0.05362095531587057, "percentage": 5.36, "elapsed_time": "0:16:46", "remaining_time": "4:56:03"} +{"current_steps": 88, "total_steps": 1622, "loss": 1.6531, "learning_rate": 1.079754601226994e-05, "epoch": 0.05423728813559322, "percentage": 5.43, "elapsed_time": "0:16:58", "remaining_time": "4:55:53"} +{"current_steps": 89, "total_steps": 1622, "loss": 1.69, "learning_rate": 1.0920245398773005e-05, "epoch": 0.054853620955315874, "percentage": 5.49, "elapsed_time": "0:17:09", "remaining_time": "4:55:36"} +{"current_steps": 90, "total_steps": 1622, "loss": 1.6391, "learning_rate": 1.1042944785276076e-05, "epoch": 0.05546995377503852, "percentage": 5.55, "elapsed_time": "0:17:20", "remaining_time": "4:55:18"} +{"current_steps": 91, "total_steps": 1622, "loss": 1.6845, "learning_rate": 1.1165644171779141e-05, "epoch": 0.05608628659476117, "percentage": 5.61, "elapsed_time": "0:17:32", "remaining_time": "4:55:01"} +{"current_steps": 92, "total_steps": 1622, "loss": 1.6158, "learning_rate": 1.1288343558282208e-05, "epoch": 0.05670261941448382, "percentage": 5.67, "elapsed_time": "0:17:43", "remaining_time": "4:54:44"} +{"current_steps": 93, "total_steps": 1622, "loss": 1.705, "learning_rate": 1.1411042944785277e-05, "epoch": 0.05731895223420647, "percentage": 5.73, "elapsed_time": "0:17:54", "remaining_time": "4:54:27"} +{"current_steps": 94, "total_steps": 1622, "loss": 1.6391, "learning_rate": 1.1533742331288344e-05, "epoch": 0.05793528505392912, "percentage": 5.8, "elapsed_time": "0:18:05", "remaining_time": "4:54:10"} +{"current_steps": 95, "total_steps": 1622, "loss": 1.6036, "learning_rate": 1.1656441717791411e-05, "epoch": 0.05855161787365177, "percentage": 5.86, "elapsed_time": "0:18:17", "remaining_time": "4:53:54"} +{"current_steps": 96, "total_steps": 1622, "loss": 1.638, "learning_rate": 1.177914110429448e-05, "epoch": 0.059167950693374424, "percentage": 5.92, "elapsed_time": "0:18:28", "remaining_time": "4:53:37"} +{"current_steps": 97, "total_steps": 1622, "loss": 1.7349, "learning_rate": 1.1901840490797547e-05, "epoch": 0.05978428351309707, "percentage": 5.98, "elapsed_time": "0:18:39", "remaining_time": "4:53:27"} +{"current_steps": 98, "total_steps": 1622, "loss": 1.7307, "learning_rate": 1.2024539877300614e-05, "epoch": 0.06040061633281972, "percentage": 6.04, "elapsed_time": "0:18:51", "remaining_time": "4:53:13"} +{"current_steps": 99, "total_steps": 1622, "loss": 1.6535, "learning_rate": 1.2147239263803683e-05, "epoch": 0.061016949152542375, "percentage": 6.1, "elapsed_time": "0:19:03", "remaining_time": "4:53:04"} +{"current_steps": 100, "total_steps": 1622, "loss": 1.6399, "learning_rate": 1.226993865030675e-05, "epoch": 0.061633281972265024, "percentage": 6.17, "elapsed_time": "0:19:14", "remaining_time": "4:52:47"} +{"current_steps": 101, "total_steps": 1622, "loss": 1.6726, "learning_rate": 1.2392638036809817e-05, "epoch": 0.06224961479198767, "percentage": 6.23, "elapsed_time": "0:19:39", "remaining_time": "4:56:08"} +{"current_steps": 102, "total_steps": 1622, "loss": 1.7249, "learning_rate": 1.2515337423312886e-05, "epoch": 0.06286594761171033, "percentage": 6.29, "elapsed_time": "0:19:51", "remaining_time": "4:55:57"} +{"current_steps": 103, "total_steps": 1622, "loss": 1.5952, "learning_rate": 1.2638036809815953e-05, "epoch": 0.06348228043143297, "percentage": 6.35, "elapsed_time": "0:20:03", "remaining_time": "4:55:45"} +{"current_steps": 104, "total_steps": 1622, "loss": 1.6807, "learning_rate": 1.276073619631902e-05, "epoch": 0.06409861325115562, "percentage": 6.41, "elapsed_time": "0:20:14", "remaining_time": "4:55:27"} +{"current_steps": 105, "total_steps": 1622, "loss": 1.7408, "learning_rate": 1.2883435582822085e-05, "epoch": 0.06471494607087827, "percentage": 6.47, "elapsed_time": "0:20:25", "remaining_time": "4:55:10"} +{"current_steps": 106, "total_steps": 1622, "loss": 1.6491, "learning_rate": 1.3006134969325156e-05, "epoch": 0.06533127889060092, "percentage": 6.54, "elapsed_time": "0:20:37", "remaining_time": "4:55:00"} +{"current_steps": 107, "total_steps": 1622, "loss": 1.6553, "learning_rate": 1.3128834355828221e-05, "epoch": 0.06594761171032358, "percentage": 6.6, "elapsed_time": "0:20:48", "remaining_time": "4:54:42"} +{"current_steps": 108, "total_steps": 1622, "loss": 1.6865, "learning_rate": 1.3251533742331288e-05, "epoch": 0.06656394453004623, "percentage": 6.66, "elapsed_time": "0:21:00", "remaining_time": "4:54:31"} +{"current_steps": 109, "total_steps": 1622, "loss": 1.6533, "learning_rate": 1.3374233128834357e-05, "epoch": 0.06718027734976888, "percentage": 6.72, "elapsed_time": "0:21:11", "remaining_time": "4:54:13"} +{"current_steps": 110, "total_steps": 1622, "loss": 1.655, "learning_rate": 1.3496932515337424e-05, "epoch": 0.06779661016949153, "percentage": 6.78, "elapsed_time": "0:21:23", "remaining_time": "4:54:02"} +{"current_steps": 111, "total_steps": 1622, "loss": 1.6839, "learning_rate": 1.3619631901840491e-05, "epoch": 0.06841294298921417, "percentage": 6.84, "elapsed_time": "0:21:34", "remaining_time": "4:53:44"} +{"current_steps": 112, "total_steps": 1622, "loss": 1.7008, "learning_rate": 1.374233128834356e-05, "epoch": 0.06902927580893682, "percentage": 6.91, "elapsed_time": "0:21:46", "remaining_time": "4:53:33"} +{"current_steps": 113, "total_steps": 1622, "loss": 1.6727, "learning_rate": 1.3865030674846627e-05, "epoch": 0.06964560862865947, "percentage": 6.97, "elapsed_time": "0:21:58", "remaining_time": "4:53:21"} +{"current_steps": 114, "total_steps": 1622, "loss": 1.6206, "learning_rate": 1.3987730061349694e-05, "epoch": 0.07026194144838213, "percentage": 7.03, "elapsed_time": "0:22:09", "remaining_time": "4:53:04"} +{"current_steps": 115, "total_steps": 1622, "loss": 1.6105, "learning_rate": 1.4110429447852763e-05, "epoch": 0.07087827426810478, "percentage": 7.09, "elapsed_time": "0:22:20", "remaining_time": "4:52:46"} +{"current_steps": 116, "total_steps": 1622, "loss": 1.6696, "learning_rate": 1.423312883435583e-05, "epoch": 0.07149460708782743, "percentage": 7.15, "elapsed_time": "0:22:31", "remaining_time": "4:52:29"} +{"current_steps": 117, "total_steps": 1622, "loss": 1.5962, "learning_rate": 1.4355828220858897e-05, "epoch": 0.07211093990755008, "percentage": 7.21, "elapsed_time": "0:22:43", "remaining_time": "4:52:13"} +{"current_steps": 118, "total_steps": 1622, "loss": 1.6951, "learning_rate": 1.4478527607361965e-05, "epoch": 0.07272727272727272, "percentage": 7.27, "elapsed_time": "0:22:54", "remaining_time": "4:51:56"} +{"current_steps": 119, "total_steps": 1622, "loss": 1.6336, "learning_rate": 1.4601226993865032e-05, "epoch": 0.07334360554699537, "percentage": 7.34, "elapsed_time": "0:23:05", "remaining_time": "4:51:39"} +{"current_steps": 120, "total_steps": 1622, "loss": 1.6505, "learning_rate": 1.47239263803681e-05, "epoch": 0.07395993836671803, "percentage": 7.4, "elapsed_time": "0:23:16", "remaining_time": "4:51:22"} +{"current_steps": 121, "total_steps": 1622, "loss": 1.6807, "learning_rate": 1.4846625766871168e-05, "epoch": 0.07457627118644068, "percentage": 7.46, "elapsed_time": "0:23:27", "remaining_time": "4:51:05"} +{"current_steps": 122, "total_steps": 1622, "loss": 1.6754, "learning_rate": 1.4969325153374235e-05, "epoch": 0.07519260400616333, "percentage": 7.52, "elapsed_time": "0:23:39", "remaining_time": "4:50:49"} +{"current_steps": 123, "total_steps": 1622, "loss": 1.6701, "learning_rate": 1.50920245398773e-05, "epoch": 0.07580893682588598, "percentage": 7.58, "elapsed_time": "0:23:50", "remaining_time": "4:50:32"} +{"current_steps": 124, "total_steps": 1622, "loss": 1.5921, "learning_rate": 1.5214723926380371e-05, "epoch": 0.07642526964560863, "percentage": 7.64, "elapsed_time": "0:24:01", "remaining_time": "4:50:16"} +{"current_steps": 125, "total_steps": 1622, "loss": 1.6701, "learning_rate": 1.5337423312883436e-05, "epoch": 0.07704160246533127, "percentage": 7.71, "elapsed_time": "0:24:12", "remaining_time": "4:50:00"} +{"current_steps": 126, "total_steps": 1622, "loss": 1.6448, "learning_rate": 1.5460122699386504e-05, "epoch": 0.07765793528505392, "percentage": 7.77, "elapsed_time": "0:24:24", "remaining_time": "4:49:43"} +{"current_steps": 127, "total_steps": 1622, "loss": 1.6551, "learning_rate": 1.5582822085889574e-05, "epoch": 0.07827426810477658, "percentage": 7.83, "elapsed_time": "0:24:35", "remaining_time": "4:49:27"} +{"current_steps": 128, "total_steps": 1622, "loss": 1.6138, "learning_rate": 1.570552147239264e-05, "epoch": 0.07889060092449923, "percentage": 7.89, "elapsed_time": "0:24:46", "remaining_time": "4:49:11"} +{"current_steps": 129, "total_steps": 1622, "loss": 1.7048, "learning_rate": 1.5828220858895708e-05, "epoch": 0.07950693374422188, "percentage": 7.95, "elapsed_time": "0:24:57", "remaining_time": "4:48:56"} +{"current_steps": 130, "total_steps": 1622, "loss": 1.6601, "learning_rate": 1.5950920245398772e-05, "epoch": 0.08012326656394453, "percentage": 8.01, "elapsed_time": "0:25:10", "remaining_time": "4:48:52"} +{"current_steps": 131, "total_steps": 1622, "loss": 1.6426, "learning_rate": 1.6073619631901842e-05, "epoch": 0.08073959938366718, "percentage": 8.08, "elapsed_time": "0:25:21", "remaining_time": "4:48:36"} +{"current_steps": 132, "total_steps": 1622, "loss": 1.6097, "learning_rate": 1.619631901840491e-05, "epoch": 0.08135593220338982, "percentage": 8.14, "elapsed_time": "0:25:32", "remaining_time": "4:48:20"} +{"current_steps": 133, "total_steps": 1622, "loss": 1.5951, "learning_rate": 1.6319018404907976e-05, "epoch": 0.08197226502311249, "percentage": 8.2, "elapsed_time": "0:25:43", "remaining_time": "4:48:04"} +{"current_steps": 134, "total_steps": 1622, "loss": 1.6357, "learning_rate": 1.6441717791411043e-05, "epoch": 0.08258859784283513, "percentage": 8.26, "elapsed_time": "0:25:55", "remaining_time": "4:47:49"} +{"current_steps": 135, "total_steps": 1622, "loss": 1.6303, "learning_rate": 1.656441717791411e-05, "epoch": 0.08320493066255778, "percentage": 8.32, "elapsed_time": "0:26:06", "remaining_time": "4:47:33"} +{"current_steps": 136, "total_steps": 1622, "loss": 1.6775, "learning_rate": 1.6687116564417178e-05, "epoch": 0.08382126348228043, "percentage": 8.38, "elapsed_time": "0:26:17", "remaining_time": "4:47:18"} +{"current_steps": 137, "total_steps": 1622, "loss": 1.6489, "learning_rate": 1.6809815950920248e-05, "epoch": 0.08443759630200308, "percentage": 8.45, "elapsed_time": "0:26:28", "remaining_time": "4:47:02"} +{"current_steps": 138, "total_steps": 1622, "loss": 1.6709, "learning_rate": 1.6932515337423315e-05, "epoch": 0.08505392912172573, "percentage": 8.51, "elapsed_time": "0:26:40", "remaining_time": "4:46:47"} +{"current_steps": 139, "total_steps": 1622, "loss": 1.6397, "learning_rate": 1.7055214723926382e-05, "epoch": 0.08567026194144839, "percentage": 8.57, "elapsed_time": "0:26:51", "remaining_time": "4:46:31"} +{"current_steps": 140, "total_steps": 1622, "loss": 1.6465, "learning_rate": 1.717791411042945e-05, "epoch": 0.08628659476117104, "percentage": 8.63, "elapsed_time": "0:27:02", "remaining_time": "4:46:16"} +{"current_steps": 141, "total_steps": 1622, "loss": 1.6894, "learning_rate": 1.7300613496932516e-05, "epoch": 0.08690292758089369, "percentage": 8.69, "elapsed_time": "0:27:13", "remaining_time": "4:46:01"} +{"current_steps": 142, "total_steps": 1622, "loss": 1.7309, "learning_rate": 1.7423312883435583e-05, "epoch": 0.08751926040061633, "percentage": 8.75, "elapsed_time": "0:27:25", "remaining_time": "4:45:45"} +{"current_steps": 143, "total_steps": 1622, "loss": 1.7347, "learning_rate": 1.7546012269938654e-05, "epoch": 0.08813559322033898, "percentage": 8.82, "elapsed_time": "0:27:36", "remaining_time": "4:45:30"} +{"current_steps": 144, "total_steps": 1622, "loss": 1.7072, "learning_rate": 1.766871165644172e-05, "epoch": 0.08875192604006163, "percentage": 8.88, "elapsed_time": "0:27:47", "remaining_time": "4:45:15"} +{"current_steps": 145, "total_steps": 1622, "loss": 1.6258, "learning_rate": 1.7791411042944788e-05, "epoch": 0.08936825885978428, "percentage": 8.94, "elapsed_time": "0:27:58", "remaining_time": "4:45:00"} +{"current_steps": 146, "total_steps": 1622, "loss": 1.6455, "learning_rate": 1.7914110429447855e-05, "epoch": 0.08998459167950694, "percentage": 9.0, "elapsed_time": "0:28:09", "remaining_time": "4:44:45"} +{"current_steps": 147, "total_steps": 1622, "loss": 1.6359, "learning_rate": 1.8036809815950922e-05, "epoch": 0.09060092449922959, "percentage": 9.06, "elapsed_time": "0:28:21", "remaining_time": "4:44:30"} +{"current_steps": 148, "total_steps": 1622, "loss": 1.6115, "learning_rate": 1.815950920245399e-05, "epoch": 0.09121725731895224, "percentage": 9.12, "elapsed_time": "0:28:32", "remaining_time": "4:44:16"} +{"current_steps": 149, "total_steps": 1622, "loss": 1.6048, "learning_rate": 1.828220858895706e-05, "epoch": 0.09183359013867488, "percentage": 9.19, "elapsed_time": "0:28:43", "remaining_time": "4:44:01"} +{"current_steps": 150, "total_steps": 1622, "loss": 1.6641, "learning_rate": 1.8404907975460123e-05, "epoch": 0.09244992295839753, "percentage": 9.25, "elapsed_time": "0:28:55", "remaining_time": "4:43:46"} +{"current_steps": 151, "total_steps": 1622, "loss": 1.6361, "learning_rate": 1.852760736196319e-05, "epoch": 0.09306625577812018, "percentage": 9.31, "elapsed_time": "0:29:20", "remaining_time": "4:45:53"} +{"current_steps": 152, "total_steps": 1622, "loss": 1.5913, "learning_rate": 1.8650306748466257e-05, "epoch": 0.09368258859784284, "percentage": 9.37, "elapsed_time": "0:29:32", "remaining_time": "4:45:37"} +{"current_steps": 153, "total_steps": 1622, "loss": 1.6121, "learning_rate": 1.8773006134969328e-05, "epoch": 0.09429892141756549, "percentage": 9.43, "elapsed_time": "0:29:43", "remaining_time": "4:45:25"} +{"current_steps": 154, "total_steps": 1622, "loss": 1.6558, "learning_rate": 1.8895705521472395e-05, "epoch": 0.09491525423728814, "percentage": 9.49, "elapsed_time": "0:29:54", "remaining_time": "4:45:10"} +{"current_steps": 155, "total_steps": 1622, "loss": 1.6564, "learning_rate": 1.9018404907975462e-05, "epoch": 0.09553158705701079, "percentage": 9.56, "elapsed_time": "0:30:06", "remaining_time": "4:44:54"} +{"current_steps": 156, "total_steps": 1622, "loss": 1.6478, "learning_rate": 1.914110429447853e-05, "epoch": 0.09614791987673343, "percentage": 9.62, "elapsed_time": "0:30:17", "remaining_time": "4:44:39"} +{"current_steps": 157, "total_steps": 1622, "loss": 1.7155, "learning_rate": 1.9263803680981596e-05, "epoch": 0.09676425269645608, "percentage": 9.68, "elapsed_time": "0:30:29", "remaining_time": "4:44:28"} +{"current_steps": 158, "total_steps": 1622, "loss": 1.5845, "learning_rate": 1.9386503067484663e-05, "epoch": 0.09738058551617873, "percentage": 9.74, "elapsed_time": "0:30:40", "remaining_time": "4:44:12"} +{"current_steps": 159, "total_steps": 1622, "loss": 1.6579, "learning_rate": 1.9509202453987733e-05, "epoch": 0.09799691833590139, "percentage": 9.8, "elapsed_time": "0:30:51", "remaining_time": "4:43:57"} +{"current_steps": 160, "total_steps": 1622, "loss": 1.6359, "learning_rate": 1.96319018404908e-05, "epoch": 0.09861325115562404, "percentage": 9.86, "elapsed_time": "0:31:02", "remaining_time": "4:43:41"} +{"current_steps": 161, "total_steps": 1622, "loss": 1.6087, "learning_rate": 1.9754601226993868e-05, "epoch": 0.09922958397534669, "percentage": 9.93, "elapsed_time": "0:31:14", "remaining_time": "4:43:26"} +{"current_steps": 162, "total_steps": 1622, "loss": 1.6117, "learning_rate": 1.9877300613496935e-05, "epoch": 0.09984591679506934, "percentage": 9.99, "elapsed_time": "0:31:25", "remaining_time": "4:43:10"} +{"current_steps": 163, "total_steps": 1622, "loss": 1.6237, "learning_rate": 2e-05, "epoch": 0.10046224961479198, "percentage": 10.05, "elapsed_time": "0:31:36", "remaining_time": "4:42:55"} +{"current_steps": 164, "total_steps": 1622, "loss": 1.6681, "learning_rate": 1.999997681756781e-05, "epoch": 0.10107858243451463, "percentage": 10.11, "elapsed_time": "0:31:47", "remaining_time": "4:42:40"} +{"current_steps": 165, "total_steps": 1622, "loss": 1.6788, "learning_rate": 1.999990727037872e-05, "epoch": 0.1016949152542373, "percentage": 10.17, "elapsed_time": "0:31:58", "remaining_time": "4:42:25"} +{"current_steps": 166, "total_steps": 1622, "loss": 1.626, "learning_rate": 1.999979135875519e-05, "epoch": 0.10231124807395994, "percentage": 10.23, "elapsed_time": "0:32:10", "remaining_time": "4:42:09"} +{"current_steps": 167, "total_steps": 1622, "loss": 1.6328, "learning_rate": 1.999962908323464e-05, "epoch": 0.10292758089368259, "percentage": 10.3, "elapsed_time": "0:32:21", "remaining_time": "4:41:54"} +{"current_steps": 168, "total_steps": 1622, "loss": 1.5747, "learning_rate": 1.9999420444569462e-05, "epoch": 0.10354391371340524, "percentage": 10.36, "elapsed_time": "0:32:32", "remaining_time": "4:41:39"} +{"current_steps": 169, "total_steps": 1622, "loss": 1.6392, "learning_rate": 1.9999165443727e-05, "epoch": 0.10416024653312789, "percentage": 10.42, "elapsed_time": "0:32:43", "remaining_time": "4:41:24"} +{"current_steps": 170, "total_steps": 1622, "loss": 1.6279, "learning_rate": 1.9998864081889567e-05, "epoch": 0.10477657935285054, "percentage": 10.48, "elapsed_time": "0:32:55", "remaining_time": "4:41:09"} +{"current_steps": 171, "total_steps": 1622, "loss": 1.6671, "learning_rate": 1.999851636045442e-05, "epoch": 0.10539291217257318, "percentage": 10.54, "elapsed_time": "0:33:06", "remaining_time": "4:40:55"} +{"current_steps": 172, "total_steps": 1622, "loss": 1.6003, "learning_rate": 1.9998122281033763e-05, "epoch": 0.10600924499229585, "percentage": 10.6, "elapsed_time": "0:33:17", "remaining_time": "4:40:40"} +{"current_steps": 173, "total_steps": 1622, "loss": 1.7534, "learning_rate": 1.9997681845454743e-05, "epoch": 0.1066255778120185, "percentage": 10.67, "elapsed_time": "0:33:29", "remaining_time": "4:40:29"} +{"current_steps": 174, "total_steps": 1622, "loss": 1.5881, "learning_rate": 1.9997195055759435e-05, "epoch": 0.10724191063174114, "percentage": 10.73, "elapsed_time": "0:33:40", "remaining_time": "4:40:14"} +{"current_steps": 175, "total_steps": 1622, "loss": 1.6323, "learning_rate": 1.9996661914204833e-05, "epoch": 0.10785824345146379, "percentage": 10.79, "elapsed_time": "0:33:52", "remaining_time": "4:40:03"} +{"current_steps": 176, "total_steps": 1622, "loss": 1.6109, "learning_rate": 1.9996082423262835e-05, "epoch": 0.10847457627118644, "percentage": 10.85, "elapsed_time": "0:34:03", "remaining_time": "4:39:48"} +{"current_steps": 177, "total_steps": 1622, "loss": 1.6395, "learning_rate": 1.9995456585620245e-05, "epoch": 0.10909090909090909, "percentage": 10.91, "elapsed_time": "0:34:14", "remaining_time": "4:39:34"} +{"current_steps": 178, "total_steps": 1622, "loss": 1.664, "learning_rate": 1.9994784404178755e-05, "epoch": 0.10970724191063175, "percentage": 10.97, "elapsed_time": "0:34:25", "remaining_time": "4:39:19"} +{"current_steps": 179, "total_steps": 1622, "loss": 1.6415, "learning_rate": 1.9994065882054924e-05, "epoch": 0.1103235747303544, "percentage": 11.04, "elapsed_time": "0:34:37", "remaining_time": "4:39:04"} +{"current_steps": 180, "total_steps": 1622, "loss": 1.6023, "learning_rate": 1.9993301022580164e-05, "epoch": 0.11093990755007704, "percentage": 11.1, "elapsed_time": "0:34:48", "remaining_time": "4:38:50"} +{"current_steps": 181, "total_steps": 1622, "loss": 1.6279, "learning_rate": 1.9992489829300745e-05, "epoch": 0.11155624036979969, "percentage": 11.16, "elapsed_time": "0:34:59", "remaining_time": "4:38:35"} +{"current_steps": 182, "total_steps": 1622, "loss": 1.7735, "learning_rate": 1.9991632305977748e-05, "epoch": 0.11217257318952234, "percentage": 11.22, "elapsed_time": "0:35:10", "remaining_time": "4:38:21"} +{"current_steps": 183, "total_steps": 1622, "loss": 1.6742, "learning_rate": 1.9990728456587067e-05, "epoch": 0.11278890600924499, "percentage": 11.28, "elapsed_time": "0:35:23", "remaining_time": "4:38:19"} +{"current_steps": 184, "total_steps": 1622, "loss": 1.5975, "learning_rate": 1.998977828531939e-05, "epoch": 0.11340523882896764, "percentage": 11.34, "elapsed_time": "0:35:34", "remaining_time": "4:38:04"} +{"current_steps": 185, "total_steps": 1622, "loss": 1.5829, "learning_rate": 1.9988781796580174e-05, "epoch": 0.1140215716486903, "percentage": 11.41, "elapsed_time": "0:35:46", "remaining_time": "4:37:50"} +{"current_steps": 186, "total_steps": 1622, "loss": 1.6149, "learning_rate": 1.998773899498962e-05, "epoch": 0.11463790446841295, "percentage": 11.47, "elapsed_time": "0:35:57", "remaining_time": "4:37:35"} +{"current_steps": 187, "total_steps": 1622, "loss": 1.5948, "learning_rate": 1.9986649885382672e-05, "epoch": 0.1152542372881356, "percentage": 11.53, "elapsed_time": "0:36:08", "remaining_time": "4:37:21"} +{"current_steps": 188, "total_steps": 1622, "loss": 1.6292, "learning_rate": 1.9985514472808965e-05, "epoch": 0.11587057010785824, "percentage": 11.59, "elapsed_time": "0:36:19", "remaining_time": "4:37:07"} +{"current_steps": 189, "total_steps": 1622, "loss": 1.6389, "learning_rate": 1.9984332762532827e-05, "epoch": 0.11648690292758089, "percentage": 11.65, "elapsed_time": "0:36:31", "remaining_time": "4:36:53"} +{"current_steps": 190, "total_steps": 1622, "loss": 1.6252, "learning_rate": 1.998310476003324e-05, "epoch": 0.11710323574730354, "percentage": 11.71, "elapsed_time": "0:36:42", "remaining_time": "4:36:38"} +{"current_steps": 191, "total_steps": 1622, "loss": 1.6863, "learning_rate": 1.9981830471003825e-05, "epoch": 0.1177195685670262, "percentage": 11.78, "elapsed_time": "0:36:53", "remaining_time": "4:36:24"} +{"current_steps": 192, "total_steps": 1622, "loss": 1.65, "learning_rate": 1.9980509901352802e-05, "epoch": 0.11833590138674885, "percentage": 11.84, "elapsed_time": "0:37:04", "remaining_time": "4:36:10"} +{"current_steps": 193, "total_steps": 1622, "loss": 1.6652, "learning_rate": 1.9979143057202975e-05, "epoch": 0.1189522342064715, "percentage": 11.9, "elapsed_time": "0:37:16", "remaining_time": "4:35:56"} +{"current_steps": 194, "total_steps": 1622, "loss": 1.5493, "learning_rate": 1.9977729944891697e-05, "epoch": 0.11956856702619414, "percentage": 11.96, "elapsed_time": "0:37:27", "remaining_time": "4:35:42"} +{"current_steps": 195, "total_steps": 1622, "loss": 1.5497, "learning_rate": 1.9976270570970847e-05, "epoch": 0.12018489984591679, "percentage": 12.02, "elapsed_time": "0:37:38", "remaining_time": "4:35:28"} +{"current_steps": 196, "total_steps": 1622, "loss": 1.6222, "learning_rate": 1.997476494220679e-05, "epoch": 0.12080123266563944, "percentage": 12.08, "elapsed_time": "0:37:49", "remaining_time": "4:35:14"} +{"current_steps": 197, "total_steps": 1622, "loss": 1.66, "learning_rate": 1.9973213065580353e-05, "epoch": 0.12141756548536209, "percentage": 12.15, "elapsed_time": "0:38:01", "remaining_time": "4:35:00"} +{"current_steps": 198, "total_steps": 1622, "loss": 1.6427, "learning_rate": 1.9971614948286797e-05, "epoch": 0.12203389830508475, "percentage": 12.21, "elapsed_time": "0:38:12", "remaining_time": "4:34:50"} +{"current_steps": 199, "total_steps": 1622, "loss": 1.5954, "learning_rate": 1.9969970597735764e-05, "epoch": 0.1226502311248074, "percentage": 12.27, "elapsed_time": "0:38:24", "remaining_time": "4:34:36"} +{"current_steps": 200, "total_steps": 1622, "loss": 1.6064, "learning_rate": 1.9968280021551264e-05, "epoch": 0.12326656394453005, "percentage": 12.33, "elapsed_time": "0:38:35", "remaining_time": "4:34:22"} +{"current_steps": 201, "total_steps": 1622, "loss": 1.5742, "learning_rate": 1.9966543227571634e-05, "epoch": 0.1238828967642527, "percentage": 12.39, "elapsed_time": "0:39:00", "remaining_time": "4:35:48"} +{"current_steps": 202, "total_steps": 1622, "loss": 1.6723, "learning_rate": 1.996476022384949e-05, "epoch": 0.12449922958397534, "percentage": 12.45, "elapsed_time": "0:39:12", "remaining_time": "4:35:37"} +{"current_steps": 203, "total_steps": 1622, "loss": 1.5666, "learning_rate": 1.9962931018651713e-05, "epoch": 0.125115562403698, "percentage": 12.52, "elapsed_time": "0:39:24", "remaining_time": "4:35:25"} +{"current_steps": 204, "total_steps": 1622, "loss": 1.6277, "learning_rate": 1.996105562045938e-05, "epoch": 0.12573189522342065, "percentage": 12.58, "elapsed_time": "0:39:35", "remaining_time": "4:35:11"} +{"current_steps": 205, "total_steps": 1622, "loss": 1.6204, "learning_rate": 1.9959134037967757e-05, "epoch": 0.1263482280431433, "percentage": 12.64, "elapsed_time": "0:39:46", "remaining_time": "4:34:56"} +{"current_steps": 206, "total_steps": 1622, "loss": 1.6449, "learning_rate": 1.995716628008623e-05, "epoch": 0.12696456086286595, "percentage": 12.7, "elapsed_time": "0:39:57", "remaining_time": "4:34:42"} +{"current_steps": 207, "total_steps": 1622, "loss": 1.5764, "learning_rate": 1.9955152355938278e-05, "epoch": 0.1275808936825886, "percentage": 12.76, "elapsed_time": "0:40:09", "remaining_time": "4:34:31"} +{"current_steps": 208, "total_steps": 1622, "loss": 1.6075, "learning_rate": 1.995309227486144e-05, "epoch": 0.12819722650231125, "percentage": 12.82, "elapsed_time": "0:40:20", "remaining_time": "4:34:16"} +{"current_steps": 209, "total_steps": 1622, "loss": 1.645, "learning_rate": 1.9950986046407252e-05, "epoch": 0.1288135593220339, "percentage": 12.89, "elapsed_time": "0:40:32", "remaining_time": "4:34:02"} +{"current_steps": 210, "total_steps": 1622, "loss": 1.6225, "learning_rate": 1.994883368034121e-05, "epoch": 0.12942989214175654, "percentage": 12.95, "elapsed_time": "0:40:43", "remaining_time": "4:33:47"} +{"current_steps": 211, "total_steps": 1622, "loss": 1.6033, "learning_rate": 1.994663518664274e-05, "epoch": 0.1300462249614792, "percentage": 13.01, "elapsed_time": "0:40:54", "remaining_time": "4:33:33"} +{"current_steps": 212, "total_steps": 1622, "loss": 1.631, "learning_rate": 1.994439057550512e-05, "epoch": 0.13066255778120184, "percentage": 13.07, "elapsed_time": "0:41:05", "remaining_time": "4:33:19"} +{"current_steps": 213, "total_steps": 1622, "loss": 1.6177, "learning_rate": 1.9942099857335457e-05, "epoch": 0.13127889060092449, "percentage": 13.13, "elapsed_time": "0:41:17", "remaining_time": "4:33:05"} +{"current_steps": 214, "total_steps": 1622, "loss": 1.6313, "learning_rate": 1.993976304275464e-05, "epoch": 0.13189522342064716, "percentage": 13.19, "elapsed_time": "0:41:28", "remaining_time": "4:32:51"} +{"current_steps": 215, "total_steps": 1622, "loss": 1.6037, "learning_rate": 1.9937380142597277e-05, "epoch": 0.1325115562403698, "percentage": 13.26, "elapsed_time": "0:41:39", "remaining_time": "4:32:37"} +{"current_steps": 216, "total_steps": 1622, "loss": 1.621, "learning_rate": 1.9934951167911648e-05, "epoch": 0.13312788906009246, "percentage": 13.32, "elapsed_time": "0:41:50", "remaining_time": "4:32:23"} +{"current_steps": 217, "total_steps": 1622, "loss": 1.6132, "learning_rate": 1.993247612995967e-05, "epoch": 0.1337442218798151, "percentage": 13.38, "elapsed_time": "0:42:01", "remaining_time": "4:32:09"} +{"current_steps": 218, "total_steps": 1622, "loss": 1.6284, "learning_rate": 1.9929955040216813e-05, "epoch": 0.13436055469953775, "percentage": 13.44, "elapsed_time": "0:42:13", "remaining_time": "4:31:54"} +{"current_steps": 219, "total_steps": 1622, "loss": 1.6506, "learning_rate": 1.9927387910372085e-05, "epoch": 0.1349768875192604, "percentage": 13.5, "elapsed_time": "0:42:24", "remaining_time": "4:31:40"} +{"current_steps": 220, "total_steps": 1622, "loss": 1.61, "learning_rate": 1.9924774752327943e-05, "epoch": 0.13559322033898305, "percentage": 13.56, "elapsed_time": "0:42:35", "remaining_time": "4:31:27"} +{"current_steps": 221, "total_steps": 1622, "loss": 1.5915, "learning_rate": 1.9922115578200256e-05, "epoch": 0.1362095531587057, "percentage": 13.63, "elapsed_time": "0:42:46", "remaining_time": "4:31:13"} +{"current_steps": 222, "total_steps": 1622, "loss": 1.6937, "learning_rate": 1.991941040031826e-05, "epoch": 0.13682588597842835, "percentage": 13.69, "elapsed_time": "0:42:58", "remaining_time": "4:30:59"} +{"current_steps": 223, "total_steps": 1622, "loss": 1.5671, "learning_rate": 1.991665923122446e-05, "epoch": 0.137442218798151, "percentage": 13.75, "elapsed_time": "0:43:09", "remaining_time": "4:30:45"} +{"current_steps": 224, "total_steps": 1622, "loss": 1.6084, "learning_rate": 1.9913862083674626e-05, "epoch": 0.13805855161787364, "percentage": 13.81, "elapsed_time": "0:43:20", "remaining_time": "4:30:31"} +{"current_steps": 225, "total_steps": 1622, "loss": 1.5487, "learning_rate": 1.991101897063769e-05, "epoch": 0.1386748844375963, "percentage": 13.87, "elapsed_time": "0:43:32", "remaining_time": "4:30:17"} +{"current_steps": 226, "total_steps": 1622, "loss": 1.6293, "learning_rate": 1.9908129905295708e-05, "epoch": 0.13929121725731894, "percentage": 13.93, "elapsed_time": "0:43:43", "remaining_time": "4:30:04"} +{"current_steps": 227, "total_steps": 1622, "loss": 1.629, "learning_rate": 1.9905194901043794e-05, "epoch": 0.13990755007704161, "percentage": 14.0, "elapsed_time": "0:43:54", "remaining_time": "4:29:51"} +{"current_steps": 228, "total_steps": 1622, "loss": 1.6088, "learning_rate": 1.990221397149005e-05, "epoch": 0.14052388289676426, "percentage": 14.06, "elapsed_time": "0:44:05", "remaining_time": "4:29:37"} +{"current_steps": 229, "total_steps": 1622, "loss": 1.6166, "learning_rate": 1.9899187130455524e-05, "epoch": 0.1411402157164869, "percentage": 14.12, "elapsed_time": "0:44:17", "remaining_time": "4:29:23"} +{"current_steps": 230, "total_steps": 1622, "loss": 1.5773, "learning_rate": 1.9896114391974114e-05, "epoch": 0.14175654853620956, "percentage": 14.18, "elapsed_time": "0:44:28", "remaining_time": "4:29:09"} +{"current_steps": 231, "total_steps": 1622, "loss": 1.6255, "learning_rate": 1.989299577029254e-05, "epoch": 0.1423728813559322, "percentage": 14.24, "elapsed_time": "0:44:39", "remaining_time": "4:28:56"} +{"current_steps": 232, "total_steps": 1622, "loss": 1.6249, "learning_rate": 1.988983127987024e-05, "epoch": 0.14298921417565486, "percentage": 14.3, "elapsed_time": "0:44:50", "remaining_time": "4:28:42"} +{"current_steps": 233, "total_steps": 1622, "loss": 1.6214, "learning_rate": 1.9886620935379332e-05, "epoch": 0.1436055469953775, "percentage": 14.36, "elapsed_time": "0:45:02", "remaining_time": "4:28:28"} +{"current_steps": 234, "total_steps": 1622, "loss": 1.6361, "learning_rate": 1.9883364751704544e-05, "epoch": 0.14422187981510015, "percentage": 14.43, "elapsed_time": "0:45:13", "remaining_time": "4:28:15"} +{"current_steps": 235, "total_steps": 1622, "loss": 1.5406, "learning_rate": 1.9880062743943117e-05, "epoch": 0.1448382126348228, "percentage": 14.49, "elapsed_time": "0:45:25", "remaining_time": "4:28:07"} +{"current_steps": 236, "total_steps": 1622, "loss": 1.5745, "learning_rate": 1.9876714927404774e-05, "epoch": 0.14545454545454545, "percentage": 14.55, "elapsed_time": "0:45:36", "remaining_time": "4:27:53"} +{"current_steps": 237, "total_steps": 1622, "loss": 1.6485, "learning_rate": 1.987332131761161e-05, "epoch": 0.1460708782742681, "percentage": 14.61, "elapsed_time": "0:45:48", "remaining_time": "4:27:42"} +{"current_steps": 238, "total_steps": 1622, "loss": 1.6167, "learning_rate": 1.986988193029806e-05, "epoch": 0.14668721109399074, "percentage": 14.67, "elapsed_time": "0:45:59", "remaining_time": "4:27:28"} +{"current_steps": 239, "total_steps": 1622, "loss": 1.564, "learning_rate": 1.9866396781410793e-05, "epoch": 0.1473035439137134, "percentage": 14.73, "elapsed_time": "0:46:11", "remaining_time": "4:27:14"} +{"current_steps": 240, "total_steps": 1622, "loss": 1.5974, "learning_rate": 1.9862865887108658e-05, "epoch": 0.14791987673343607, "percentage": 14.8, "elapsed_time": "0:46:22", "remaining_time": "4:27:01"} +{"current_steps": 241, "total_steps": 1622, "loss": 1.6217, "learning_rate": 1.985928926376259e-05, "epoch": 0.14853620955315872, "percentage": 14.86, "elapsed_time": "0:46:33", "remaining_time": "4:26:47"} +{"current_steps": 242, "total_steps": 1622, "loss": 1.6267, "learning_rate": 1.9855666927955565e-05, "epoch": 0.14915254237288136, "percentage": 14.92, "elapsed_time": "0:46:44", "remaining_time": "4:26:33"} +{"current_steps": 243, "total_steps": 1622, "loss": 1.6124, "learning_rate": 1.985199889648249e-05, "epoch": 0.149768875192604, "percentage": 14.98, "elapsed_time": "0:46:55", "remaining_time": "4:26:20"} +{"current_steps": 244, "total_steps": 1622, "loss": 1.6104, "learning_rate": 1.9848285186350142e-05, "epoch": 0.15038520801232666, "percentage": 15.04, "elapsed_time": "0:47:07", "remaining_time": "4:26:06"} +{"current_steps": 245, "total_steps": 1622, "loss": 1.6685, "learning_rate": 1.9844525814777083e-05, "epoch": 0.1510015408320493, "percentage": 15.1, "elapsed_time": "0:47:18", "remaining_time": "4:25:53"} +{"current_steps": 246, "total_steps": 1622, "loss": 1.6171, "learning_rate": 1.9840720799193596e-05, "epoch": 0.15161787365177196, "percentage": 15.17, "elapsed_time": "0:47:29", "remaining_time": "4:25:39"} +{"current_steps": 247, "total_steps": 1622, "loss": 1.5725, "learning_rate": 1.9836870157241585e-05, "epoch": 0.1522342064714946, "percentage": 15.23, "elapsed_time": "0:47:40", "remaining_time": "4:25:25"} +{"current_steps": 248, "total_steps": 1622, "loss": 1.5981, "learning_rate": 1.9832973906774494e-05, "epoch": 0.15285053929121725, "percentage": 15.29, "elapsed_time": "0:47:52", "remaining_time": "4:25:12"} +{"current_steps": 249, "total_steps": 1622, "loss": 1.5362, "learning_rate": 1.9829032065857235e-05, "epoch": 0.1534668721109399, "percentage": 15.35, "elapsed_time": "0:48:03", "remaining_time": "4:24:59"} +{"current_steps": 250, "total_steps": 1622, "loss": 1.5912, "learning_rate": 1.9825044652766105e-05, "epoch": 0.15408320493066255, "percentage": 15.41, "elapsed_time": "0:48:14", "remaining_time": "4:24:45"} +{"current_steps": 251, "total_steps": 1622, "loss": 1.5918, "learning_rate": 1.9821011685988686e-05, "epoch": 0.1546995377503852, "percentage": 15.47, "elapsed_time": "0:48:40", "remaining_time": "4:25:49"} +{"current_steps": 252, "total_steps": 1622, "loss": 1.7239, "learning_rate": 1.9816933184223774e-05, "epoch": 0.15531587057010784, "percentage": 15.54, "elapsed_time": "0:48:51", "remaining_time": "4:25:35"} +{"current_steps": 253, "total_steps": 1622, "loss": 1.678, "learning_rate": 1.9812809166381292e-05, "epoch": 0.15593220338983052, "percentage": 15.6, "elapsed_time": "0:49:02", "remaining_time": "4:25:22"} +{"current_steps": 254, "total_steps": 1622, "loss": 1.6679, "learning_rate": 1.9808639651582187e-05, "epoch": 0.15654853620955317, "percentage": 15.66, "elapsed_time": "0:49:13", "remaining_time": "4:25:08"} +{"current_steps": 255, "total_steps": 1622, "loss": 1.5748, "learning_rate": 1.9804424659158365e-05, "epoch": 0.15716486902927582, "percentage": 15.72, "elapsed_time": "0:49:25", "remaining_time": "4:24:54"} +{"current_steps": 256, "total_steps": 1622, "loss": 1.5521, "learning_rate": 1.980016420865257e-05, "epoch": 0.15778120184899846, "percentage": 15.78, "elapsed_time": "0:49:36", "remaining_time": "4:24:41"} +{"current_steps": 257, "total_steps": 1622, "loss": 1.6674, "learning_rate": 1.9795858319818336e-05, "epoch": 0.1583975346687211, "percentage": 15.84, "elapsed_time": "0:49:47", "remaining_time": "4:24:27"} +{"current_steps": 258, "total_steps": 1622, "loss": 1.5911, "learning_rate": 1.9791507012619847e-05, "epoch": 0.15901386748844376, "percentage": 15.91, "elapsed_time": "0:49:58", "remaining_time": "4:24:13"} +{"current_steps": 259, "total_steps": 1622, "loss": 1.6403, "learning_rate": 1.9787110307231884e-05, "epoch": 0.1596302003081664, "percentage": 15.97, "elapsed_time": "0:50:09", "remaining_time": "4:23:59"} +{"current_steps": 260, "total_steps": 1622, "loss": 1.5537, "learning_rate": 1.9782668224039715e-05, "epoch": 0.16024653312788906, "percentage": 16.03, "elapsed_time": "0:50:21", "remaining_time": "4:23:46"} +{"current_steps": 261, "total_steps": 1622, "loss": 1.6001, "learning_rate": 1.9778180783638997e-05, "epoch": 0.1608628659476117, "percentage": 16.09, "elapsed_time": "0:50:32", "remaining_time": "4:23:32"} +{"current_steps": 262, "total_steps": 1622, "loss": 1.6665, "learning_rate": 1.9773648006835682e-05, "epoch": 0.16147919876733435, "percentage": 16.15, "elapsed_time": "0:50:43", "remaining_time": "4:23:19"} +{"current_steps": 263, "total_steps": 1622, "loss": 1.5774, "learning_rate": 1.9769069914645935e-05, "epoch": 0.162095531587057, "percentage": 16.21, "elapsed_time": "0:50:54", "remaining_time": "4:23:05"} +{"current_steps": 264, "total_steps": 1622, "loss": 1.6013, "learning_rate": 1.9764446528296014e-05, "epoch": 0.16271186440677965, "percentage": 16.28, "elapsed_time": "0:51:06", "remaining_time": "4:22:52"} +{"current_steps": 265, "total_steps": 1622, "loss": 1.6028, "learning_rate": 1.9759777869222185e-05, "epoch": 0.1633281972265023, "percentage": 16.34, "elapsed_time": "0:51:17", "remaining_time": "4:22:39"} +{"current_steps": 266, "total_steps": 1622, "loss": 1.6614, "learning_rate": 1.975506395907063e-05, "epoch": 0.16394453004622497, "percentage": 16.4, "elapsed_time": "0:51:28", "remaining_time": "4:22:25"} +{"current_steps": 267, "total_steps": 1622, "loss": 1.6025, "learning_rate": 1.9750304819697324e-05, "epoch": 0.16456086286594762, "percentage": 16.46, "elapsed_time": "0:51:40", "remaining_time": "4:22:12"} +{"current_steps": 268, "total_steps": 1622, "loss": 1.6135, "learning_rate": 1.9745500473167952e-05, "epoch": 0.16517719568567027, "percentage": 16.52, "elapsed_time": "0:51:51", "remaining_time": "4:21:58"} +{"current_steps": 269, "total_steps": 1622, "loss": 1.6097, "learning_rate": 1.9740650941757803e-05, "epoch": 0.16579352850539292, "percentage": 16.58, "elapsed_time": "0:52:02", "remaining_time": "4:21:45"} +{"current_steps": 270, "total_steps": 1622, "loss": 1.54, "learning_rate": 1.9735756247951665e-05, "epoch": 0.16640986132511557, "percentage": 16.65, "elapsed_time": "0:52:13", "remaining_time": "4:21:32"} +{"current_steps": 271, "total_steps": 1622, "loss": 1.5738, "learning_rate": 1.9730816414443715e-05, "epoch": 0.1670261941448382, "percentage": 16.71, "elapsed_time": "0:52:25", "remaining_time": "4:21:20"} +{"current_steps": 272, "total_steps": 1622, "loss": 1.5991, "learning_rate": 1.972583146413743e-05, "epoch": 0.16764252696456086, "percentage": 16.77, "elapsed_time": "0:52:36", "remaining_time": "4:21:07"} +{"current_steps": 273, "total_steps": 1622, "loss": 1.6675, "learning_rate": 1.972080142014546e-05, "epoch": 0.1682588597842835, "percentage": 16.83, "elapsed_time": "0:52:47", "remaining_time": "4:20:54"} +{"current_steps": 274, "total_steps": 1622, "loss": 1.6108, "learning_rate": 1.971572630578954e-05, "epoch": 0.16887519260400616, "percentage": 16.89, "elapsed_time": "0:52:59", "remaining_time": "4:20:40"} +{"current_steps": 275, "total_steps": 1622, "loss": 1.5841, "learning_rate": 1.971060614460036e-05, "epoch": 0.1694915254237288, "percentage": 16.95, "elapsed_time": "0:53:10", "remaining_time": "4:20:27"} +{"current_steps": 276, "total_steps": 1622, "loss": 1.6666, "learning_rate": 1.9705440960317487e-05, "epoch": 0.17010785824345145, "percentage": 17.02, "elapsed_time": "0:53:21", "remaining_time": "4:20:14"} +{"current_steps": 277, "total_steps": 1622, "loss": 1.6136, "learning_rate": 1.9700230776889228e-05, "epoch": 0.1707241910631741, "percentage": 17.08, "elapsed_time": "0:53:33", "remaining_time": "4:20:01"} +{"current_steps": 278, "total_steps": 1622, "loss": 1.5842, "learning_rate": 1.969497561847252e-05, "epoch": 0.17134052388289678, "percentage": 17.14, "elapsed_time": "0:53:44", "remaining_time": "4:19:47"} +{"current_steps": 279, "total_steps": 1622, "loss": 1.5558, "learning_rate": 1.968967550943284e-05, "epoch": 0.17195685670261943, "percentage": 17.2, "elapsed_time": "0:53:55", "remaining_time": "4:19:34"} +{"current_steps": 280, "total_steps": 1622, "loss": 1.5983, "learning_rate": 1.9684330474344067e-05, "epoch": 0.17257318952234207, "percentage": 17.26, "elapsed_time": "0:54:06", "remaining_time": "4:19:21"} +{"current_steps": 281, "total_steps": 1622, "loss": 1.5945, "learning_rate": 1.967894053798839e-05, "epoch": 0.17318952234206472, "percentage": 17.32, "elapsed_time": "0:54:18", "remaining_time": "4:19:08"} +{"current_steps": 282, "total_steps": 1622, "loss": 1.6686, "learning_rate": 1.9673505725356174e-05, "epoch": 0.17380585516178737, "percentage": 17.39, "elapsed_time": "0:54:29", "remaining_time": "4:18:56"} +{"current_steps": 283, "total_steps": 1622, "loss": 1.5752, "learning_rate": 1.966802606164585e-05, "epoch": 0.17442218798151002, "percentage": 17.45, "elapsed_time": "0:54:40", "remaining_time": "4:18:42"} +{"current_steps": 284, "total_steps": 1622, "loss": 1.5281, "learning_rate": 1.966250157226381e-05, "epoch": 0.17503852080123267, "percentage": 17.51, "elapsed_time": "0:54:52", "remaining_time": "4:18:29"} +{"current_steps": 285, "total_steps": 1622, "loss": 1.6313, "learning_rate": 1.965693228282427e-05, "epoch": 0.17565485362095531, "percentage": 17.57, "elapsed_time": "0:55:03", "remaining_time": "4:18:16"} +{"current_steps": 286, "total_steps": 1622, "loss": 1.6282, "learning_rate": 1.9651318219149167e-05, "epoch": 0.17627118644067796, "percentage": 17.63, "elapsed_time": "0:55:14", "remaining_time": "4:18:03"} +{"current_steps": 287, "total_steps": 1622, "loss": 1.6233, "learning_rate": 1.964565940726803e-05, "epoch": 0.1768875192604006, "percentage": 17.69, "elapsed_time": "0:55:25", "remaining_time": "4:17:50"} +{"current_steps": 288, "total_steps": 1622, "loss": 1.6397, "learning_rate": 1.9639955873417863e-05, "epoch": 0.17750385208012326, "percentage": 17.76, "elapsed_time": "0:55:37", "remaining_time": "4:17:37"} +{"current_steps": 289, "total_steps": 1622, "loss": 1.6016, "learning_rate": 1.963420764404302e-05, "epoch": 0.1781201848998459, "percentage": 17.82, "elapsed_time": "0:55:48", "remaining_time": "4:17:24"} +{"current_steps": 290, "total_steps": 1622, "loss": 1.6155, "learning_rate": 1.9628414745795097e-05, "epoch": 0.17873651771956856, "percentage": 17.88, "elapsed_time": "0:55:59", "remaining_time": "4:17:10"} +{"current_steps": 291, "total_steps": 1622, "loss": 1.6065, "learning_rate": 1.9622577205532783e-05, "epoch": 0.17935285053929123, "percentage": 17.94, "elapsed_time": "0:56:10", "remaining_time": "4:16:57"} +{"current_steps": 292, "total_steps": 1622, "loss": 1.6979, "learning_rate": 1.9616695050321758e-05, "epoch": 0.17996918335901388, "percentage": 18.0, "elapsed_time": "0:56:22", "remaining_time": "4:16:44"} +{"current_steps": 293, "total_steps": 1622, "loss": 1.6085, "learning_rate": 1.961076830743455e-05, "epoch": 0.18058551617873653, "percentage": 18.06, "elapsed_time": "0:56:33", "remaining_time": "4:16:31"} +{"current_steps": 294, "total_steps": 1622, "loss": 1.6557, "learning_rate": 1.9604797004350423e-05, "epoch": 0.18120184899845918, "percentage": 18.13, "elapsed_time": "0:56:44", "remaining_time": "4:16:18"} +{"current_steps": 295, "total_steps": 1622, "loss": 1.6366, "learning_rate": 1.9598781168755242e-05, "epoch": 0.18181818181818182, "percentage": 18.19, "elapsed_time": "0:56:55", "remaining_time": "4:16:05"} +{"current_steps": 296, "total_steps": 1622, "loss": 1.6067, "learning_rate": 1.959272082854135e-05, "epoch": 0.18243451463790447, "percentage": 18.25, "elapsed_time": "0:57:07", "remaining_time": "4:15:52"} +{"current_steps": 297, "total_steps": 1622, "loss": 1.5762, "learning_rate": 1.9586616011807433e-05, "epoch": 0.18305084745762712, "percentage": 18.31, "elapsed_time": "0:57:18", "remaining_time": "4:15:39"} +{"current_steps": 298, "total_steps": 1622, "loss": 1.5606, "learning_rate": 1.958046674685839e-05, "epoch": 0.18366718027734977, "percentage": 18.37, "elapsed_time": "0:57:29", "remaining_time": "4:15:26"} +{"current_steps": 299, "total_steps": 1622, "loss": 1.5769, "learning_rate": 1.95742730622052e-05, "epoch": 0.18428351309707242, "percentage": 18.43, "elapsed_time": "0:57:40", "remaining_time": "4:15:13"} +{"current_steps": 300, "total_steps": 1622, "loss": 1.6225, "learning_rate": 1.9568034986564806e-05, "epoch": 0.18489984591679506, "percentage": 18.5, "elapsed_time": "0:57:52", "remaining_time": "4:15:00"} +{"current_steps": 301, "total_steps": 1622, "loss": 1.6337, "learning_rate": 1.9561752548859957e-05, "epoch": 0.1855161787365177, "percentage": 18.56, "elapsed_time": "0:58:17", "remaining_time": "4:15:48"} +{"current_steps": 302, "total_steps": 1622, "loss": 1.6244, "learning_rate": 1.9555425778219087e-05, "epoch": 0.18613251155624036, "percentage": 18.62, "elapsed_time": "0:58:28", "remaining_time": "4:15:35"} +{"current_steps": 303, "total_steps": 1622, "loss": 1.6235, "learning_rate": 1.9549054703976184e-05, "epoch": 0.186748844375963, "percentage": 18.68, "elapsed_time": "0:58:39", "remaining_time": "4:15:22"} +{"current_steps": 304, "total_steps": 1622, "loss": 1.6511, "learning_rate": 1.954263935567065e-05, "epoch": 0.18736517719568568, "percentage": 18.74, "elapsed_time": "0:58:51", "remaining_time": "4:15:09"} +{"current_steps": 305, "total_steps": 1622, "loss": 1.6015, "learning_rate": 1.9536179763047158e-05, "epoch": 0.18798151001540833, "percentage": 18.8, "elapsed_time": "0:59:02", "remaining_time": "4:14:56"} +{"current_steps": 306, "total_steps": 1622, "loss": 1.5634, "learning_rate": 1.9529675956055522e-05, "epoch": 0.18859784283513098, "percentage": 18.87, "elapsed_time": "0:59:13", "remaining_time": "4:14:43"} +{"current_steps": 307, "total_steps": 1622, "loss": 1.6305, "learning_rate": 1.9523127964850558e-05, "epoch": 0.18921417565485363, "percentage": 18.93, "elapsed_time": "0:59:24", "remaining_time": "4:14:30"} +{"current_steps": 308, "total_steps": 1622, "loss": 1.615, "learning_rate": 1.951653581979193e-05, "epoch": 0.18983050847457628, "percentage": 18.99, "elapsed_time": "0:59:36", "remaining_time": "4:14:16"} +{"current_steps": 309, "total_steps": 1622, "loss": 1.5922, "learning_rate": 1.9509899551444044e-05, "epoch": 0.19044684129429892, "percentage": 19.05, "elapsed_time": "0:59:47", "remaining_time": "4:14:03"} +{"current_steps": 310, "total_steps": 1622, "loss": 1.5626, "learning_rate": 1.9503219190575856e-05, "epoch": 0.19106317411402157, "percentage": 19.11, "elapsed_time": "0:59:58", "remaining_time": "4:13:50"} +{"current_steps": 311, "total_steps": 1622, "loss": 1.6065, "learning_rate": 1.949649476816077e-05, "epoch": 0.19167950693374422, "percentage": 19.17, "elapsed_time": "1:00:09", "remaining_time": "4:13:37"} +{"current_steps": 312, "total_steps": 1622, "loss": 1.612, "learning_rate": 1.948972631537648e-05, "epoch": 0.19229583975346687, "percentage": 19.24, "elapsed_time": "1:00:21", "remaining_time": "4:13:24"} +{"current_steps": 313, "total_steps": 1622, "loss": 1.5681, "learning_rate": 1.948291386360483e-05, "epoch": 0.19291217257318952, "percentage": 19.3, "elapsed_time": "1:00:32", "remaining_time": "4:13:11"} +{"current_steps": 314, "total_steps": 1622, "loss": 1.57, "learning_rate": 1.9476057444431652e-05, "epoch": 0.19352850539291216, "percentage": 19.36, "elapsed_time": "1:00:43", "remaining_time": "4:12:58"} +{"current_steps": 315, "total_steps": 1622, "loss": 1.5651, "learning_rate": 1.9469157089646652e-05, "epoch": 0.1941448382126348, "percentage": 19.42, "elapsed_time": "1:00:54", "remaining_time": "4:12:45"} +{"current_steps": 316, "total_steps": 1622, "loss": 1.5661, "learning_rate": 1.946221283124322e-05, "epoch": 0.19476117103235746, "percentage": 19.48, "elapsed_time": "1:01:06", "remaining_time": "4:12:32"} +{"current_steps": 317, "total_steps": 1622, "loss": 1.5938, "learning_rate": 1.9455224701418323e-05, "epoch": 0.19537750385208014, "percentage": 19.54, "elapsed_time": "1:01:17", "remaining_time": "4:12:19"} +{"current_steps": 318, "total_steps": 1622, "loss": 1.5985, "learning_rate": 1.9448192732572324e-05, "epoch": 0.19599383667180278, "percentage": 19.61, "elapsed_time": "1:01:28", "remaining_time": "4:12:05"} +{"current_steps": 319, "total_steps": 1622, "loss": 1.6467, "learning_rate": 1.9441116957308858e-05, "epoch": 0.19661016949152543, "percentage": 19.67, "elapsed_time": "1:01:39", "remaining_time": "4:11:52"} +{"current_steps": 320, "total_steps": 1622, "loss": 1.585, "learning_rate": 1.9433997408434658e-05, "epoch": 0.19722650231124808, "percentage": 19.73, "elapsed_time": "1:01:51", "remaining_time": "4:11:39"} +{"current_steps": 321, "total_steps": 1622, "loss": 1.6078, "learning_rate": 1.9426834118959416e-05, "epoch": 0.19784283513097073, "percentage": 19.79, "elapsed_time": "1:02:02", "remaining_time": "4:11:26"} +{"current_steps": 322, "total_steps": 1622, "loss": 1.6238, "learning_rate": 1.941962712209563e-05, "epoch": 0.19845916795069338, "percentage": 19.85, "elapsed_time": "1:02:13", "remaining_time": "4:11:13"} +{"current_steps": 323, "total_steps": 1622, "loss": 1.562, "learning_rate": 1.941237645125843e-05, "epoch": 0.19907550077041603, "percentage": 19.91, "elapsed_time": "1:02:24", "remaining_time": "4:11:00"} +{"current_steps": 324, "total_steps": 1622, "loss": 1.6038, "learning_rate": 1.9405082140065472e-05, "epoch": 0.19969183359013867, "percentage": 19.98, "elapsed_time": "1:02:36", "remaining_time": "4:10:47"} +{"current_steps": 325, "total_steps": 1622, "loss": 1.5163, "learning_rate": 1.9397744222336715e-05, "epoch": 0.20030816640986132, "percentage": 20.04, "elapsed_time": "1:02:47", "remaining_time": "4:10:34"} +{"current_steps": 326, "total_steps": 1622, "loss": 1.5492, "learning_rate": 1.9390362732094326e-05, "epoch": 0.20092449922958397, "percentage": 20.1, "elapsed_time": "1:02:58", "remaining_time": "4:10:21"} +{"current_steps": 327, "total_steps": 1622, "loss": 1.5635, "learning_rate": 1.9382937703562478e-05, "epoch": 0.20154083204930662, "percentage": 20.16, "elapsed_time": "1:03:09", "remaining_time": "4:10:09"} +{"current_steps": 328, "total_steps": 1622, "loss": 1.5846, "learning_rate": 1.9375469171167218e-05, "epoch": 0.20215716486902927, "percentage": 20.22, "elapsed_time": "1:03:21", "remaining_time": "4:09:56"} +{"current_steps": 329, "total_steps": 1622, "loss": 1.5427, "learning_rate": 1.9367957169536295e-05, "epoch": 0.2027734976887519, "percentage": 20.28, "elapsed_time": "1:03:32", "remaining_time": "4:09:43"} +{"current_steps": 330, "total_steps": 1622, "loss": 1.6104, "learning_rate": 1.9360401733499e-05, "epoch": 0.2033898305084746, "percentage": 20.35, "elapsed_time": "1:03:43", "remaining_time": "4:09:30"} +{"current_steps": 331, "total_steps": 1622, "loss": 1.5677, "learning_rate": 1.9352802898086013e-05, "epoch": 0.20400616332819724, "percentage": 20.41, "elapsed_time": "1:03:54", "remaining_time": "4:09:17"} +{"current_steps": 332, "total_steps": 1622, "loss": 1.5958, "learning_rate": 1.934516069852923e-05, "epoch": 0.20462249614791989, "percentage": 20.47, "elapsed_time": "1:04:06", "remaining_time": "4:09:04"} +{"current_steps": 333, "total_steps": 1622, "loss": 1.5817, "learning_rate": 1.9337475170261602e-05, "epoch": 0.20523882896764253, "percentage": 20.53, "elapsed_time": "1:04:17", "remaining_time": "4:08:51"} +{"current_steps": 334, "total_steps": 1622, "loss": 1.6079, "learning_rate": 1.9329746348916982e-05, "epoch": 0.20585516178736518, "percentage": 20.59, "elapsed_time": "1:04:28", "remaining_time": "4:08:38"} +{"current_steps": 335, "total_steps": 1622, "loss": 1.6097, "learning_rate": 1.9321974270329946e-05, "epoch": 0.20647149460708783, "percentage": 20.65, "elapsed_time": "1:04:39", "remaining_time": "4:08:25"} +{"current_steps": 336, "total_steps": 1622, "loss": 1.5934, "learning_rate": 1.9314158970535627e-05, "epoch": 0.20708782742681048, "percentage": 20.72, "elapsed_time": "1:04:51", "remaining_time": "4:08:12"} +{"current_steps": 337, "total_steps": 1622, "loss": 1.5602, "learning_rate": 1.930630048576956e-05, "epoch": 0.20770416024653313, "percentage": 20.78, "elapsed_time": "1:05:02", "remaining_time": "4:07:59"} +{"current_steps": 338, "total_steps": 1622, "loss": 1.5759, "learning_rate": 1.9298398852467496e-05, "epoch": 0.20832049306625577, "percentage": 20.84, "elapsed_time": "1:05:13", "remaining_time": "4:07:46"} +{"current_steps": 339, "total_steps": 1622, "loss": 1.5563, "learning_rate": 1.929045410726526e-05, "epoch": 0.20893682588597842, "percentage": 20.9, "elapsed_time": "1:05:24", "remaining_time": "4:07:34"} +{"current_steps": 340, "total_steps": 1622, "loss": 1.639, "learning_rate": 1.9282466286998548e-05, "epoch": 0.20955315870570107, "percentage": 20.96, "elapsed_time": "1:05:36", "remaining_time": "4:07:22"} +{"current_steps": 341, "total_steps": 1622, "loss": 1.6095, "learning_rate": 1.9274435428702784e-05, "epoch": 0.21016949152542372, "percentage": 21.02, "elapsed_time": "1:05:47", "remaining_time": "4:07:10"} +{"current_steps": 342, "total_steps": 1622, "loss": 1.5791, "learning_rate": 1.9266361569612936e-05, "epoch": 0.21078582434514637, "percentage": 21.09, "elapsed_time": "1:05:58", "remaining_time": "4:06:57"} +{"current_steps": 343, "total_steps": 1622, "loss": 1.6052, "learning_rate": 1.9258244747163336e-05, "epoch": 0.21140215716486904, "percentage": 21.15, "elapsed_time": "1:06:10", "remaining_time": "4:06:44"} +{"current_steps": 344, "total_steps": 1622, "loss": 1.5525, "learning_rate": 1.9250084998987527e-05, "epoch": 0.2120184899845917, "percentage": 21.21, "elapsed_time": "1:06:21", "remaining_time": "4:06:31"} +{"current_steps": 345, "total_steps": 1622, "loss": 1.5777, "learning_rate": 1.9241882362918067e-05, "epoch": 0.21263482280431434, "percentage": 21.27, "elapsed_time": "1:06:32", "remaining_time": "4:06:18"} +{"current_steps": 346, "total_steps": 1622, "loss": 1.5855, "learning_rate": 1.9233636876986367e-05, "epoch": 0.213251155624037, "percentage": 21.33, "elapsed_time": "1:06:43", "remaining_time": "4:06:05"} +{"current_steps": 347, "total_steps": 1622, "loss": 1.5784, "learning_rate": 1.922534857942251e-05, "epoch": 0.21386748844375963, "percentage": 21.39, "elapsed_time": "1:06:55", "remaining_time": "4:05:53"} +{"current_steps": 348, "total_steps": 1622, "loss": 1.5822, "learning_rate": 1.921701750865508e-05, "epoch": 0.21448382126348228, "percentage": 21.45, "elapsed_time": "1:07:06", "remaining_time": "4:05:40"} +{"current_steps": 349, "total_steps": 1622, "loss": 1.5237, "learning_rate": 1.920864370331097e-05, "epoch": 0.21510015408320493, "percentage": 21.52, "elapsed_time": "1:07:17", "remaining_time": "4:05:27"} +{"current_steps": 350, "total_steps": 1622, "loss": 1.6114, "learning_rate": 1.9200227202215215e-05, "epoch": 0.21571648690292758, "percentage": 21.58, "elapsed_time": "1:07:29", "remaining_time": "4:05:15"} +{"current_steps": 351, "total_steps": 1622, "loss": 1.5855, "learning_rate": 1.9191768044390812e-05, "epoch": 0.21633281972265023, "percentage": 21.64, "elapsed_time": "1:07:54", "remaining_time": "4:05:53"} +{"current_steps": 352, "total_steps": 1622, "loss": 1.6683, "learning_rate": 1.918326626905852e-05, "epoch": 0.21694915254237288, "percentage": 21.7, "elapsed_time": "1:08:05", "remaining_time": "4:05:40"} +{"current_steps": 353, "total_steps": 1622, "loss": 1.5157, "learning_rate": 1.917472191563672e-05, "epoch": 0.21756548536209552, "percentage": 21.76, "elapsed_time": "1:08:16", "remaining_time": "4:05:27"} +{"current_steps": 354, "total_steps": 1622, "loss": 1.5746, "learning_rate": 1.9166135023741183e-05, "epoch": 0.21818181818181817, "percentage": 21.82, "elapsed_time": "1:08:27", "remaining_time": "4:05:14"} +{"current_steps": 355, "total_steps": 1622, "loss": 1.6262, "learning_rate": 1.9157505633184915e-05, "epoch": 0.21879815100154082, "percentage": 21.89, "elapsed_time": "1:08:39", "remaining_time": "4:05:01"} +{"current_steps": 356, "total_steps": 1622, "loss": 1.6341, "learning_rate": 1.9148833783977974e-05, "epoch": 0.2194144838212635, "percentage": 21.95, "elapsed_time": "1:08:50", "remaining_time": "4:04:48"} +{"current_steps": 357, "total_steps": 1622, "loss": 1.584, "learning_rate": 1.9140119516327268e-05, "epoch": 0.22003081664098614, "percentage": 22.01, "elapsed_time": "1:09:01", "remaining_time": "4:04:35"} +{"current_steps": 358, "total_steps": 1622, "loss": 1.622, "learning_rate": 1.913136287063638e-05, "epoch": 0.2206471494607088, "percentage": 22.07, "elapsed_time": "1:09:12", "remaining_time": "4:04:22"} +{"current_steps": 359, "total_steps": 1622, "loss": 1.5578, "learning_rate": 1.9122563887505382e-05, "epoch": 0.22126348228043144, "percentage": 22.13, "elapsed_time": "1:09:24", "remaining_time": "4:04:10"} +{"current_steps": 360, "total_steps": 1622, "loss": 1.5919, "learning_rate": 1.9113722607730635e-05, "epoch": 0.2218798151001541, "percentage": 22.19, "elapsed_time": "1:09:35", "remaining_time": "4:03:57"} +{"current_steps": 361, "total_steps": 1622, "loss": 1.583, "learning_rate": 1.9104839072304617e-05, "epoch": 0.22249614791987674, "percentage": 22.26, "elapsed_time": "1:09:46", "remaining_time": "4:03:44"} +{"current_steps": 362, "total_steps": 1622, "loss": 1.5924, "learning_rate": 1.909591332241572e-05, "epoch": 0.22311248073959938, "percentage": 22.32, "elapsed_time": "1:09:57", "remaining_time": "4:03:31"} +{"current_steps": 363, "total_steps": 1622, "loss": 1.5737, "learning_rate": 1.908694539944806e-05, "epoch": 0.22372881355932203, "percentage": 22.38, "elapsed_time": "1:10:09", "remaining_time": "4:03:18"} +{"current_steps": 364, "total_steps": 1622, "loss": 1.5969, "learning_rate": 1.907793534498129e-05, "epoch": 0.22434514637904468, "percentage": 22.44, "elapsed_time": "1:10:20", "remaining_time": "4:03:05"} +{"current_steps": 365, "total_steps": 1622, "loss": 1.5703, "learning_rate": 1.9068883200790407e-05, "epoch": 0.22496147919876733, "percentage": 22.5, "elapsed_time": "1:10:31", "remaining_time": "4:02:53"} +{"current_steps": 366, "total_steps": 1622, "loss": 1.5863, "learning_rate": 1.9059789008845555e-05, "epoch": 0.22557781201848998, "percentage": 22.56, "elapsed_time": "1:10:42", "remaining_time": "4:02:40"} +{"current_steps": 367, "total_steps": 1622, "loss": 1.5963, "learning_rate": 1.905065281131183e-05, "epoch": 0.22619414483821262, "percentage": 22.63, "elapsed_time": "1:10:54", "remaining_time": "4:02:27"} +{"current_steps": 368, "total_steps": 1622, "loss": 1.5624, "learning_rate": 1.904147465054909e-05, "epoch": 0.22681047765793527, "percentage": 22.69, "elapsed_time": "1:11:05", "remaining_time": "4:02:14"} +{"current_steps": 369, "total_steps": 1622, "loss": 1.5976, "learning_rate": 1.903225456911175e-05, "epoch": 0.22742681047765795, "percentage": 22.75, "elapsed_time": "1:11:17", "remaining_time": "4:02:03"} +{"current_steps": 370, "total_steps": 1622, "loss": 1.5661, "learning_rate": 1.902299260974859e-05, "epoch": 0.2280431432973806, "percentage": 22.81, "elapsed_time": "1:11:28", "remaining_time": "4:01:50"} +{"current_steps": 371, "total_steps": 1622, "loss": 1.6032, "learning_rate": 1.9013688815402566e-05, "epoch": 0.22865947611710324, "percentage": 22.87, "elapsed_time": "1:11:39", "remaining_time": "4:01:38"} +{"current_steps": 372, "total_steps": 1622, "loss": 1.6811, "learning_rate": 1.900434322921059e-05, "epoch": 0.2292758089368259, "percentage": 22.93, "elapsed_time": "1:11:50", "remaining_time": "4:01:25"} +{"current_steps": 373, "total_steps": 1622, "loss": 1.5797, "learning_rate": 1.8994955894503354e-05, "epoch": 0.22989214175654854, "percentage": 23.0, "elapsed_time": "1:12:02", "remaining_time": "4:01:12"} +{"current_steps": 374, "total_steps": 1622, "loss": 1.5776, "learning_rate": 1.8985526854805095e-05, "epoch": 0.2305084745762712, "percentage": 23.06, "elapsed_time": "1:12:13", "remaining_time": "4:01:00"} +{"current_steps": 375, "total_steps": 1622, "loss": 1.5505, "learning_rate": 1.8976056153833434e-05, "epoch": 0.23112480739599384, "percentage": 23.12, "elapsed_time": "1:12:24", "remaining_time": "4:00:47"} +{"current_steps": 376, "total_steps": 1622, "loss": 1.6094, "learning_rate": 1.8966543835499147e-05, "epoch": 0.23174114021571648, "percentage": 23.18, "elapsed_time": "1:12:35", "remaining_time": "4:00:34"} +{"current_steps": 377, "total_steps": 1622, "loss": 1.5908, "learning_rate": 1.895698994390597e-05, "epoch": 0.23235747303543913, "percentage": 23.24, "elapsed_time": "1:12:47", "remaining_time": "4:00:21"} +{"current_steps": 378, "total_steps": 1622, "loss": 1.587, "learning_rate": 1.894739452335039e-05, "epoch": 0.23297380585516178, "percentage": 23.3, "elapsed_time": "1:12:58", "remaining_time": "4:00:09"} +{"current_steps": 379, "total_steps": 1622, "loss": 1.5993, "learning_rate": 1.8937757618321447e-05, "epoch": 0.23359013867488443, "percentage": 23.37, "elapsed_time": "1:13:09", "remaining_time": "3:59:56"} +{"current_steps": 380, "total_steps": 1622, "loss": 1.5959, "learning_rate": 1.892807927350052e-05, "epoch": 0.23420647149460708, "percentage": 23.43, "elapsed_time": "1:13:20", "remaining_time": "3:59:43"} +{"current_steps": 381, "total_steps": 1622, "loss": 1.5887, "learning_rate": 1.8918359533761118e-05, "epoch": 0.23482280431432973, "percentage": 23.49, "elapsed_time": "1:13:32", "remaining_time": "3:59:30"} +{"current_steps": 382, "total_steps": 1622, "loss": 1.6156, "learning_rate": 1.8908598444168694e-05, "epoch": 0.2354391371340524, "percentage": 23.55, "elapsed_time": "1:13:43", "remaining_time": "3:59:18"} +{"current_steps": 383, "total_steps": 1622, "loss": 1.5586, "learning_rate": 1.8898796049980394e-05, "epoch": 0.23605546995377505, "percentage": 23.61, "elapsed_time": "1:13:54", "remaining_time": "3:59:05"} +{"current_steps": 384, "total_steps": 1622, "loss": 1.5875, "learning_rate": 1.8888952396644896e-05, "epoch": 0.2366718027734977, "percentage": 23.67, "elapsed_time": "1:14:05", "remaining_time": "3:58:53"} +{"current_steps": 385, "total_steps": 1622, "loss": 1.5651, "learning_rate": 1.8879067529802158e-05, "epoch": 0.23728813559322035, "percentage": 23.74, "elapsed_time": "1:14:17", "remaining_time": "3:58:40"} +{"current_steps": 386, "total_steps": 1622, "loss": 1.5599, "learning_rate": 1.8869141495283235e-05, "epoch": 0.237904468412943, "percentage": 23.8, "elapsed_time": "1:14:28", "remaining_time": "3:58:27"} +{"current_steps": 387, "total_steps": 1622, "loss": 1.5688, "learning_rate": 1.885917433911005e-05, "epoch": 0.23852080123266564, "percentage": 23.86, "elapsed_time": "1:14:39", "remaining_time": "3:58:14"} +{"current_steps": 388, "total_steps": 1622, "loss": 1.5519, "learning_rate": 1.8849166107495192e-05, "epoch": 0.2391371340523883, "percentage": 23.92, "elapsed_time": "1:14:50", "remaining_time": "3:58:02"} +{"current_steps": 389, "total_steps": 1622, "loss": 1.6134, "learning_rate": 1.883911684684168e-05, "epoch": 0.23975346687211094, "percentage": 23.98, "elapsed_time": "1:15:02", "remaining_time": "3:57:49"} +{"current_steps": 390, "total_steps": 1622, "loss": 1.6194, "learning_rate": 1.882902660374279e-05, "epoch": 0.24036979969183359, "percentage": 24.04, "elapsed_time": "1:15:13", "remaining_time": "3:57:37"} +{"current_steps": 391, "total_steps": 1622, "loss": 1.5894, "learning_rate": 1.8818895424981786e-05, "epoch": 0.24098613251155623, "percentage": 24.11, "elapsed_time": "1:15:24", "remaining_time": "3:57:24"} +{"current_steps": 392, "total_steps": 1622, "loss": 1.6315, "learning_rate": 1.8808723357531744e-05, "epoch": 0.24160246533127888, "percentage": 24.17, "elapsed_time": "1:15:36", "remaining_time": "3:57:13"} +{"current_steps": 393, "total_steps": 1622, "loss": 1.6058, "learning_rate": 1.8798510448555317e-05, "epoch": 0.24221879815100153, "percentage": 24.23, "elapsed_time": "1:15:47", "remaining_time": "3:57:00"} +{"current_steps": 394, "total_steps": 1622, "loss": 1.6044, "learning_rate": 1.8788256745404522e-05, "epoch": 0.24283513097072418, "percentage": 24.29, "elapsed_time": "1:15:58", "remaining_time": "3:56:48"} +{"current_steps": 395, "total_steps": 1622, "loss": 1.5405, "learning_rate": 1.8777962295620507e-05, "epoch": 0.24345146379044685, "percentage": 24.35, "elapsed_time": "1:16:09", "remaining_time": "3:56:35"} +{"current_steps": 396, "total_steps": 1622, "loss": 1.5348, "learning_rate": 1.8767627146933355e-05, "epoch": 0.2440677966101695, "percentage": 24.41, "elapsed_time": "1:16:21", "remaining_time": "3:56:23"} +{"current_steps": 397, "total_steps": 1622, "loss": 1.547, "learning_rate": 1.875725134726184e-05, "epoch": 0.24468412942989215, "percentage": 24.48, "elapsed_time": "1:16:32", "remaining_time": "3:56:10"} +{"current_steps": 398, "total_steps": 1622, "loss": 1.6282, "learning_rate": 1.8746834944713225e-05, "epoch": 0.2453004622496148, "percentage": 24.54, "elapsed_time": "1:16:43", "remaining_time": "3:55:58"} +{"current_steps": 399, "total_steps": 1622, "loss": 1.5459, "learning_rate": 1.8736377987583004e-05, "epoch": 0.24591679506933745, "percentage": 24.6, "elapsed_time": "1:16:55", "remaining_time": "3:55:45"} +{"current_steps": 400, "total_steps": 1622, "loss": 1.5778, "learning_rate": 1.8725880524354724e-05, "epoch": 0.2465331278890601, "percentage": 24.66, "elapsed_time": "1:17:06", "remaining_time": "3:55:33"} +{"current_steps": 401, "total_steps": 1622, "loss": 1.5562, "learning_rate": 1.8715342603699736e-05, "epoch": 0.24714946070878274, "percentage": 24.72, "elapsed_time": "1:17:31", "remaining_time": "3:56:04"} +{"current_steps": 402, "total_steps": 1622, "loss": 1.5258, "learning_rate": 1.870476427447696e-05, "epoch": 0.2477657935285054, "percentage": 24.78, "elapsed_time": "1:17:43", "remaining_time": "3:55:51"} +{"current_steps": 403, "total_steps": 1622, "loss": 1.4972, "learning_rate": 1.8694145585732676e-05, "epoch": 0.24838212634822804, "percentage": 24.85, "elapsed_time": "1:17:54", "remaining_time": "3:55:39"} +{"current_steps": 404, "total_steps": 1622, "loss": 1.6229, "learning_rate": 1.8683486586700295e-05, "epoch": 0.2489984591679507, "percentage": 24.91, "elapsed_time": "1:18:05", "remaining_time": "3:55:26"} +{"current_steps": 405, "total_steps": 1622, "loss": 1.4995, "learning_rate": 1.8672787326800117e-05, "epoch": 0.24961479198767333, "percentage": 24.97, "elapsed_time": "1:18:16", "remaining_time": "3:55:13"} +{"current_steps": 406, "total_steps": 1622, "loss": 1.5911, "learning_rate": 1.8662047855639118e-05, "epoch": 0.250231124807396, "percentage": 25.03, "elapsed_time": "1:18:28", "remaining_time": "3:55:01"} +{"current_steps": 407, "total_steps": 1622, "loss": 1.5896, "learning_rate": 1.865126822301071e-05, "epoch": 0.25084745762711863, "percentage": 25.09, "elapsed_time": "1:18:39", "remaining_time": "3:54:48"} +{"current_steps": 408, "total_steps": 1622, "loss": 1.6029, "learning_rate": 1.8640448478894512e-05, "epoch": 0.2514637904468413, "percentage": 25.15, "elapsed_time": "1:18:50", "remaining_time": "3:54:35"} +{"current_steps": 409, "total_steps": 1622, "loss": 1.5588, "learning_rate": 1.862958867345612e-05, "epoch": 0.2520801232665639, "percentage": 25.22, "elapsed_time": "1:19:01", "remaining_time": "3:54:23"} +{"current_steps": 410, "total_steps": 1622, "loss": 1.5575, "learning_rate": 1.8618688857046878e-05, "epoch": 0.2526964560862866, "percentage": 25.28, "elapsed_time": "1:19:13", "remaining_time": "3:54:10"} +{"current_steps": 411, "total_steps": 1622, "loss": 1.6051, "learning_rate": 1.8607749080203638e-05, "epoch": 0.2533127889060092, "percentage": 25.34, "elapsed_time": "1:19:24", "remaining_time": "3:53:57"} +{"current_steps": 412, "total_steps": 1622, "loss": 1.6317, "learning_rate": 1.859676939364852e-05, "epoch": 0.2539291217257319, "percentage": 25.4, "elapsed_time": "1:19:35", "remaining_time": "3:53:45"} +{"current_steps": 413, "total_steps": 1622, "loss": 1.5778, "learning_rate": 1.8585749848288695e-05, "epoch": 0.2545454545454545, "percentage": 25.46, "elapsed_time": "1:19:46", "remaining_time": "3:53:32"} +{"current_steps": 414, "total_steps": 1622, "loss": 1.5782, "learning_rate": 1.8574690495216142e-05, "epoch": 0.2551617873651772, "percentage": 25.52, "elapsed_time": "1:19:58", "remaining_time": "3:53:20"} +{"current_steps": 415, "total_steps": 1622, "loss": 1.575, "learning_rate": 1.8563591385707394e-05, "epoch": 0.25577812018489987, "percentage": 25.59, "elapsed_time": "1:20:09", "remaining_time": "3:53:07"} +{"current_steps": 416, "total_steps": 1622, "loss": 1.5573, "learning_rate": 1.855245257122332e-05, "epoch": 0.2563944530046225, "percentage": 25.65, "elapsed_time": "1:20:20", "remaining_time": "3:52:54"} +{"current_steps": 417, "total_steps": 1622, "loss": 1.5932, "learning_rate": 1.854127410340889e-05, "epoch": 0.25701078582434517, "percentage": 25.71, "elapsed_time": "1:20:31", "remaining_time": "3:52:42"} +{"current_steps": 418, "total_steps": 1622, "loss": 1.6114, "learning_rate": 1.8530056034092917e-05, "epoch": 0.2576271186440678, "percentage": 25.77, "elapsed_time": "1:20:42", "remaining_time": "3:52:29"} +{"current_steps": 419, "total_steps": 1622, "loss": 1.5686, "learning_rate": 1.851879841528782e-05, "epoch": 0.25824345146379046, "percentage": 25.83, "elapsed_time": "1:20:54", "remaining_time": "3:52:16"} +{"current_steps": 420, "total_steps": 1622, "loss": 1.5176, "learning_rate": 1.8507501299189402e-05, "epoch": 0.2588597842835131, "percentage": 25.89, "elapsed_time": "1:21:05", "remaining_time": "3:52:04"} +{"current_steps": 421, "total_steps": 1622, "loss": 1.5329, "learning_rate": 1.8496164738176592e-05, "epoch": 0.25947611710323576, "percentage": 25.96, "elapsed_time": "1:21:16", "remaining_time": "3:51:52"} +{"current_steps": 422, "total_steps": 1622, "loss": 1.503, "learning_rate": 1.848478878481119e-05, "epoch": 0.2600924499229584, "percentage": 26.02, "elapsed_time": "1:21:28", "remaining_time": "3:51:39"} +{"current_steps": 423, "total_steps": 1622, "loss": 1.6069, "learning_rate": 1.847337349183766e-05, "epoch": 0.26070878274268106, "percentage": 26.08, "elapsed_time": "1:21:39", "remaining_time": "3:51:27"} +{"current_steps": 424, "total_steps": 1622, "loss": 1.6036, "learning_rate": 1.8461918912182852e-05, "epoch": 0.2613251155624037, "percentage": 26.14, "elapsed_time": "1:21:50", "remaining_time": "3:51:14"} +{"current_steps": 425, "total_steps": 1622, "loss": 1.6118, "learning_rate": 1.8450425098955763e-05, "epoch": 0.26194144838212635, "percentage": 26.2, "elapsed_time": "1:22:01", "remaining_time": "3:51:02"} +{"current_steps": 426, "total_steps": 1622, "loss": 1.6316, "learning_rate": 1.8438892105447306e-05, "epoch": 0.26255778120184897, "percentage": 26.26, "elapsed_time": "1:22:13", "remaining_time": "3:50:49"} +{"current_steps": 427, "total_steps": 1622, "loss": 1.5613, "learning_rate": 1.842731998513005e-05, "epoch": 0.26317411402157165, "percentage": 26.33, "elapsed_time": "1:22:24", "remaining_time": "3:50:38"} +{"current_steps": 428, "total_steps": 1622, "loss": 1.5847, "learning_rate": 1.841570879165797e-05, "epoch": 0.2637904468412943, "percentage": 26.39, "elapsed_time": "1:22:36", "remaining_time": "3:50:25"} +{"current_steps": 429, "total_steps": 1622, "loss": 1.5252, "learning_rate": 1.8404058578866217e-05, "epoch": 0.26440677966101694, "percentage": 26.45, "elapsed_time": "1:22:47", "remaining_time": "3:50:13"} +{"current_steps": 430, "total_steps": 1622, "loss": 1.563, "learning_rate": 1.839236940077083e-05, "epoch": 0.2650231124807396, "percentage": 26.51, "elapsed_time": "1:22:58", "remaining_time": "3:50:00"} +{"current_steps": 431, "total_steps": 1622, "loss": 1.5665, "learning_rate": 1.8380641311568534e-05, "epoch": 0.26563944530046224, "percentage": 26.57, "elapsed_time": "1:23:09", "remaining_time": "3:49:48"} +{"current_steps": 432, "total_steps": 1622, "loss": 1.6339, "learning_rate": 1.8368874365636454e-05, "epoch": 0.2662557781201849, "percentage": 26.63, "elapsed_time": "1:23:20", "remaining_time": "3:49:35"} +{"current_steps": 433, "total_steps": 1622, "loss": 1.6089, "learning_rate": 1.8357068617531874e-05, "epoch": 0.26687211093990754, "percentage": 26.7, "elapsed_time": "1:23:32", "remaining_time": "3:49:23"} +{"current_steps": 434, "total_steps": 1622, "loss": 1.5701, "learning_rate": 1.8345224121991986e-05, "epoch": 0.2674884437596302, "percentage": 26.76, "elapsed_time": "1:23:43", "remaining_time": "3:49:10"} +{"current_steps": 435, "total_steps": 1622, "loss": 1.5561, "learning_rate": 1.833334093393363e-05, "epoch": 0.26810477657935283, "percentage": 26.82, "elapsed_time": "1:23:54", "remaining_time": "3:48:58"} +{"current_steps": 436, "total_steps": 1622, "loss": 1.5848, "learning_rate": 1.8321419108453054e-05, "epoch": 0.2687211093990755, "percentage": 26.88, "elapsed_time": "1:24:05", "remaining_time": "3:48:45"} +{"current_steps": 437, "total_steps": 1622, "loss": 1.6354, "learning_rate": 1.8309458700825635e-05, "epoch": 0.26933744221879813, "percentage": 26.94, "elapsed_time": "1:24:17", "remaining_time": "3:48:33"} +{"current_steps": 438, "total_steps": 1622, "loss": 1.5966, "learning_rate": 1.8297459766505637e-05, "epoch": 0.2699537750385208, "percentage": 27.0, "elapsed_time": "1:24:28", "remaining_time": "3:48:20"} +{"current_steps": 439, "total_steps": 1622, "loss": 1.5849, "learning_rate": 1.8285422361125964e-05, "epoch": 0.2705701078582434, "percentage": 27.07, "elapsed_time": "1:24:39", "remaining_time": "3:48:08"} +{"current_steps": 440, "total_steps": 1622, "loss": 1.6226, "learning_rate": 1.8273346540497876e-05, "epoch": 0.2711864406779661, "percentage": 27.13, "elapsed_time": "1:24:50", "remaining_time": "3:47:55"} +{"current_steps": 441, "total_steps": 1622, "loss": 1.5381, "learning_rate": 1.8261232360610757e-05, "epoch": 0.2718027734976888, "percentage": 27.19, "elapsed_time": "1:25:02", "remaining_time": "3:47:43"} +{"current_steps": 442, "total_steps": 1622, "loss": 1.6217, "learning_rate": 1.8249079877631833e-05, "epoch": 0.2724191063174114, "percentage": 27.25, "elapsed_time": "1:25:13", "remaining_time": "3:47:30"} +{"current_steps": 443, "total_steps": 1622, "loss": 1.6315, "learning_rate": 1.823688914790593e-05, "epoch": 0.2730354391371341, "percentage": 27.31, "elapsed_time": "1:25:24", "remaining_time": "3:47:18"} +{"current_steps": 444, "total_steps": 1622, "loss": 1.536, "learning_rate": 1.82246602279552e-05, "epoch": 0.2736517719568567, "percentage": 27.37, "elapsed_time": "1:25:35", "remaining_time": "3:47:05"} +{"current_steps": 445, "total_steps": 1622, "loss": 1.556, "learning_rate": 1.8212393174478863e-05, "epoch": 0.27426810477657937, "percentage": 27.44, "elapsed_time": "1:25:47", "remaining_time": "3:46:54"} +{"current_steps": 446, "total_steps": 1622, "loss": 1.508, "learning_rate": 1.8200088044352952e-05, "epoch": 0.274884437596302, "percentage": 27.5, "elapsed_time": "1:25:58", "remaining_time": "3:46:42"} +{"current_steps": 447, "total_steps": 1622, "loss": 1.5791, "learning_rate": 1.8187744894630025e-05, "epoch": 0.27550077041602467, "percentage": 27.56, "elapsed_time": "1:26:09", "remaining_time": "3:46:29"} +{"current_steps": 448, "total_steps": 1622, "loss": 1.5812, "learning_rate": 1.8175363782538938e-05, "epoch": 0.2761171032357473, "percentage": 27.62, "elapsed_time": "1:26:21", "remaining_time": "3:46:17"} +{"current_steps": 449, "total_steps": 1622, "loss": 1.5527, "learning_rate": 1.8162944765484548e-05, "epoch": 0.27673343605546996, "percentage": 27.68, "elapsed_time": "1:26:32", "remaining_time": "3:46:05"} +{"current_steps": 450, "total_steps": 1622, "loss": 1.5791, "learning_rate": 1.8150487901047452e-05, "epoch": 0.2773497688751926, "percentage": 27.74, "elapsed_time": "1:26:43", "remaining_time": "3:45:52"} +{"current_steps": 451, "total_steps": 1622, "loss": 1.551, "learning_rate": 1.813799324698374e-05, "epoch": 0.27796610169491526, "percentage": 27.81, "elapsed_time": "1:27:09", "remaining_time": "3:46:17"} +{"current_steps": 452, "total_steps": 1622, "loss": 1.5531, "learning_rate": 1.8125460861224708e-05, "epoch": 0.2785824345146379, "percentage": 27.87, "elapsed_time": "1:27:20", "remaining_time": "3:46:04"} +{"current_steps": 453, "total_steps": 1622, "loss": 1.5573, "learning_rate": 1.8112890801876587e-05, "epoch": 0.27919876733436055, "percentage": 27.93, "elapsed_time": "1:27:31", "remaining_time": "3:45:52"} +{"current_steps": 454, "total_steps": 1622, "loss": 1.5869, "learning_rate": 1.8100283127220287e-05, "epoch": 0.27981510015408323, "percentage": 27.99, "elapsed_time": "1:27:42", "remaining_time": "3:45:39"} +{"current_steps": 455, "total_steps": 1622, "loss": 1.5958, "learning_rate": 1.808763789571112e-05, "epoch": 0.28043143297380585, "percentage": 28.05, "elapsed_time": "1:27:54", "remaining_time": "3:45:27"} +{"current_steps": 456, "total_steps": 1622, "loss": 1.5924, "learning_rate": 1.8074955165978538e-05, "epoch": 0.2810477657935285, "percentage": 28.11, "elapsed_time": "1:28:05", "remaining_time": "3:45:15"} +{"current_steps": 457, "total_steps": 1622, "loss": 1.5896, "learning_rate": 1.8062234996825836e-05, "epoch": 0.28166409861325115, "percentage": 28.18, "elapsed_time": "1:28:16", "remaining_time": "3:45:02"} +{"current_steps": 458, "total_steps": 1622, "loss": 1.5563, "learning_rate": 1.8049477447229914e-05, "epoch": 0.2822804314329738, "percentage": 28.24, "elapsed_time": "1:28:28", "remaining_time": "3:44:50"} +{"current_steps": 459, "total_steps": 1622, "loss": 1.5079, "learning_rate": 1.803668257634097e-05, "epoch": 0.28289676425269644, "percentage": 28.3, "elapsed_time": "1:28:39", "remaining_time": "3:44:38"} +{"current_steps": 460, "total_steps": 1622, "loss": 1.6488, "learning_rate": 1.802385044348225e-05, "epoch": 0.2835130970724191, "percentage": 28.36, "elapsed_time": "1:28:50", "remaining_time": "3:44:25"} +{"current_steps": 461, "total_steps": 1622, "loss": 1.551, "learning_rate": 1.8010981108149772e-05, "epoch": 0.28412942989214174, "percentage": 28.42, "elapsed_time": "1:29:01", "remaining_time": "3:44:13"} +{"current_steps": 462, "total_steps": 1622, "loss": 1.5679, "learning_rate": 1.799807463001203e-05, "epoch": 0.2847457627118644, "percentage": 28.48, "elapsed_time": "1:29:13", "remaining_time": "3:44:00"} +{"current_steps": 463, "total_steps": 1622, "loss": 1.5667, "learning_rate": 1.7985131068909728e-05, "epoch": 0.28536209553158703, "percentage": 28.55, "elapsed_time": "1:29:24", "remaining_time": "3:43:48"} +{"current_steps": 464, "total_steps": 1622, "loss": 1.5681, "learning_rate": 1.797215048485552e-05, "epoch": 0.2859784283513097, "percentage": 28.61, "elapsed_time": "1:29:35", "remaining_time": "3:43:35"} +{"current_steps": 465, "total_steps": 1622, "loss": 1.5828, "learning_rate": 1.795913293803371e-05, "epoch": 0.28659476117103233, "percentage": 28.67, "elapsed_time": "1:29:46", "remaining_time": "3:43:23"} +{"current_steps": 466, "total_steps": 1622, "loss": 1.5468, "learning_rate": 1.7946078488799973e-05, "epoch": 0.287211093990755, "percentage": 28.73, "elapsed_time": "1:29:58", "remaining_time": "3:43:11"} +{"current_steps": 467, "total_steps": 1622, "loss": 1.5224, "learning_rate": 1.793298719768108e-05, "epoch": 0.2878274268104777, "percentage": 28.79, "elapsed_time": "1:30:09", "remaining_time": "3:42:58"} +{"current_steps": 468, "total_steps": 1622, "loss": 1.4893, "learning_rate": 1.7919859125374634e-05, "epoch": 0.2884437596302003, "percentage": 28.85, "elapsed_time": "1:30:20", "remaining_time": "3:42:46"} +{"current_steps": 469, "total_steps": 1622, "loss": 1.5729, "learning_rate": 1.790669433274876e-05, "epoch": 0.289060092449923, "percentage": 28.91, "elapsed_time": "1:30:31", "remaining_time": "3:42:34"} +{"current_steps": 470, "total_steps": 1622, "loss": 1.5117, "learning_rate": 1.7893492880841843e-05, "epoch": 0.2896764252696456, "percentage": 28.98, "elapsed_time": "1:30:43", "remaining_time": "3:42:21"} +{"current_steps": 471, "total_steps": 1622, "loss": 1.5124, "learning_rate": 1.7880254830862234e-05, "epoch": 0.2902927580893683, "percentage": 29.04, "elapsed_time": "1:30:54", "remaining_time": "3:42:09"} +{"current_steps": 472, "total_steps": 1622, "loss": 1.5321, "learning_rate": 1.7866980244187973e-05, "epoch": 0.2909090909090909, "percentage": 29.1, "elapsed_time": "1:31:05", "remaining_time": "3:41:56"} +{"current_steps": 473, "total_steps": 1622, "loss": 1.5868, "learning_rate": 1.78536691823665e-05, "epoch": 0.29152542372881357, "percentage": 29.16, "elapsed_time": "1:31:16", "remaining_time": "3:41:44"} +{"current_steps": 474, "total_steps": 1622, "loss": 1.5857, "learning_rate": 1.784032170711437e-05, "epoch": 0.2921417565485362, "percentage": 29.22, "elapsed_time": "1:31:28", "remaining_time": "3:41:32"} +{"current_steps": 475, "total_steps": 1622, "loss": 1.5611, "learning_rate": 1.7826937880316973e-05, "epoch": 0.29275808936825887, "percentage": 29.28, "elapsed_time": "1:31:39", "remaining_time": "3:41:19"} +{"current_steps": 476, "total_steps": 1622, "loss": 1.6294, "learning_rate": 1.7813517764028246e-05, "epoch": 0.2933744221879815, "percentage": 29.35, "elapsed_time": "1:31:50", "remaining_time": "3:41:07"} +{"current_steps": 477, "total_steps": 1622, "loss": 1.6022, "learning_rate": 1.780006142047037e-05, "epoch": 0.29399075500770416, "percentage": 29.41, "elapsed_time": "1:32:01", "remaining_time": "3:40:54"} +{"current_steps": 478, "total_steps": 1622, "loss": 1.5585, "learning_rate": 1.77865689120335e-05, "epoch": 0.2946070878274268, "percentage": 29.47, "elapsed_time": "1:32:13", "remaining_time": "3:40:42"} +{"current_steps": 479, "total_steps": 1622, "loss": 1.5447, "learning_rate": 1.7773040301275467e-05, "epoch": 0.29522342064714946, "percentage": 29.53, "elapsed_time": "1:32:24", "remaining_time": "3:40:31"} +{"current_steps": 480, "total_steps": 1622, "loss": 1.5383, "learning_rate": 1.77594756509215e-05, "epoch": 0.29583975346687214, "percentage": 29.59, "elapsed_time": "1:32:36", "remaining_time": "3:40:18"} +{"current_steps": 481, "total_steps": 1622, "loss": 1.5981, "learning_rate": 1.7745875023863907e-05, "epoch": 0.29645608628659476, "percentage": 29.65, "elapsed_time": "1:32:47", "remaining_time": "3:40:06"} +{"current_steps": 482, "total_steps": 1622, "loss": 1.5552, "learning_rate": 1.7732238483161813e-05, "epoch": 0.29707241910631743, "percentage": 29.72, "elapsed_time": "1:32:58", "remaining_time": "3:39:54"} +{"current_steps": 483, "total_steps": 1622, "loss": 1.5687, "learning_rate": 1.7718566092040854e-05, "epoch": 0.29768875192604005, "percentage": 29.78, "elapsed_time": "1:33:09", "remaining_time": "3:39:41"} +{"current_steps": 484, "total_steps": 1622, "loss": 1.5024, "learning_rate": 1.770485791389289e-05, "epoch": 0.2983050847457627, "percentage": 29.84, "elapsed_time": "1:33:21", "remaining_time": "3:39:29"} +{"current_steps": 485, "total_steps": 1622, "loss": 1.5396, "learning_rate": 1.7691114012275695e-05, "epoch": 0.29892141756548535, "percentage": 29.9, "elapsed_time": "1:33:32", "remaining_time": "3:39:17"} +{"current_steps": 486, "total_steps": 1622, "loss": 1.5565, "learning_rate": 1.7677334450912694e-05, "epoch": 0.299537750385208, "percentage": 29.96, "elapsed_time": "1:33:43", "remaining_time": "3:39:04"} +{"current_steps": 487, "total_steps": 1622, "loss": 1.6145, "learning_rate": 1.7663519293692625e-05, "epoch": 0.30015408320493064, "percentage": 30.02, "elapsed_time": "1:33:54", "remaining_time": "3:38:52"} +{"current_steps": 488, "total_steps": 1622, "loss": 1.5615, "learning_rate": 1.7649668604669283e-05, "epoch": 0.3007704160246533, "percentage": 30.09, "elapsed_time": "1:34:06", "remaining_time": "3:38:40"} +{"current_steps": 489, "total_steps": 1622, "loss": 1.6474, "learning_rate": 1.76357824480612e-05, "epoch": 0.30138674884437594, "percentage": 30.15, "elapsed_time": "1:34:17", "remaining_time": "3:38:27"} +{"current_steps": 490, "total_steps": 1622, "loss": 1.5321, "learning_rate": 1.762186088825135e-05, "epoch": 0.3020030816640986, "percentage": 30.21, "elapsed_time": "1:34:28", "remaining_time": "3:38:15"} +{"current_steps": 491, "total_steps": 1622, "loss": 1.5644, "learning_rate": 1.7607903989786862e-05, "epoch": 0.30261941448382124, "percentage": 30.27, "elapsed_time": "1:34:39", "remaining_time": "3:38:03"} +{"current_steps": 492, "total_steps": 1622, "loss": 1.5822, "learning_rate": 1.7593911817378698e-05, "epoch": 0.3032357473035439, "percentage": 30.33, "elapsed_time": "1:34:51", "remaining_time": "3:37:51"} +{"current_steps": 493, "total_steps": 1622, "loss": 1.5731, "learning_rate": 1.7579884435901383e-05, "epoch": 0.3038520801232666, "percentage": 30.39, "elapsed_time": "1:35:02", "remaining_time": "3:37:38"} +{"current_steps": 494, "total_steps": 1622, "loss": 1.5531, "learning_rate": 1.7565821910392677e-05, "epoch": 0.3044684129429892, "percentage": 30.46, "elapsed_time": "1:35:13", "remaining_time": "3:37:26"} +{"current_steps": 495, "total_steps": 1622, "loss": 1.5852, "learning_rate": 1.7551724306053288e-05, "epoch": 0.3050847457627119, "percentage": 30.52, "elapsed_time": "1:35:24", "remaining_time": "3:37:14"} +{"current_steps": 496, "total_steps": 1622, "loss": 1.627, "learning_rate": 1.753759168824657e-05, "epoch": 0.3057010785824345, "percentage": 30.58, "elapsed_time": "1:35:36", "remaining_time": "3:37:02"} +{"current_steps": 497, "total_steps": 1622, "loss": 1.5522, "learning_rate": 1.752342412249821e-05, "epoch": 0.3063174114021572, "percentage": 30.64, "elapsed_time": "1:35:49", "remaining_time": "3:36:53"} +{"current_steps": 498, "total_steps": 1622, "loss": 1.6046, "learning_rate": 1.750922167449594e-05, "epoch": 0.3069337442218798, "percentage": 30.7, "elapsed_time": "1:36:00", "remaining_time": "3:36:41"} +{"current_steps": 499, "total_steps": 1622, "loss": 1.4923, "learning_rate": 1.7494984410089216e-05, "epoch": 0.3075500770416025, "percentage": 30.76, "elapsed_time": "1:36:11", "remaining_time": "3:36:29"} +{"current_steps": 500, "total_steps": 1622, "loss": 1.5038, "learning_rate": 1.7480712395288917e-05, "epoch": 0.3081664098613251, "percentage": 30.83, "elapsed_time": "1:36:22", "remaining_time": "3:36:16"} +{"current_steps": 501, "total_steps": 1622, "loss": 1.5375, "learning_rate": 1.7466405696267052e-05, "epoch": 0.3087827426810478, "percentage": 30.89, "elapsed_time": "1:36:48", "remaining_time": "3:36:36"} +{"current_steps": 502, "total_steps": 1622, "loss": 1.4954, "learning_rate": 1.7452064379356435e-05, "epoch": 0.3093990755007704, "percentage": 30.95, "elapsed_time": "1:36:59", "remaining_time": "3:36:24"} +{"current_steps": 503, "total_steps": 1622, "loss": 1.5472, "learning_rate": 1.7437688511050384e-05, "epoch": 0.31001540832049307, "percentage": 31.01, "elapsed_time": "1:37:10", "remaining_time": "3:36:11"} +{"current_steps": 504, "total_steps": 1622, "loss": 1.5964, "learning_rate": 1.7423278158002422e-05, "epoch": 0.3106317411402157, "percentage": 31.07, "elapsed_time": "1:37:22", "remaining_time": "3:35:59"} +{"current_steps": 505, "total_steps": 1622, "loss": 1.587, "learning_rate": 1.7408833387025954e-05, "epoch": 0.31124807395993837, "percentage": 31.13, "elapsed_time": "1:37:33", "remaining_time": "3:35:47"} +{"current_steps": 506, "total_steps": 1622, "loss": 1.5687, "learning_rate": 1.739435426509396e-05, "epoch": 0.31186440677966104, "percentage": 31.2, "elapsed_time": "1:37:44", "remaining_time": "3:35:34"} +{"current_steps": 507, "total_steps": 1622, "loss": 1.5263, "learning_rate": 1.7379840859338705e-05, "epoch": 0.31248073959938366, "percentage": 31.26, "elapsed_time": "1:37:55", "remaining_time": "3:35:22"} +{"current_steps": 508, "total_steps": 1622, "loss": 1.5402, "learning_rate": 1.7365293237051385e-05, "epoch": 0.31309707241910634, "percentage": 31.32, "elapsed_time": "1:38:07", "remaining_time": "3:35:09"} +{"current_steps": 509, "total_steps": 1622, "loss": 1.6017, "learning_rate": 1.735071146568185e-05, "epoch": 0.31371340523882896, "percentage": 31.38, "elapsed_time": "1:38:18", "remaining_time": "3:34:57"} +{"current_steps": 510, "total_steps": 1622, "loss": 1.5636, "learning_rate": 1.7336095612838306e-05, "epoch": 0.31432973805855163, "percentage": 31.44, "elapsed_time": "1:38:29", "remaining_time": "3:34:45"} +{"current_steps": 511, "total_steps": 1622, "loss": 1.5581, "learning_rate": 1.7321445746286936e-05, "epoch": 0.31494607087827425, "percentage": 31.5, "elapsed_time": "1:38:40", "remaining_time": "3:34:33"} +{"current_steps": 512, "total_steps": 1622, "loss": 1.583, "learning_rate": 1.7306761933951662e-05, "epoch": 0.31556240369799693, "percentage": 31.57, "elapsed_time": "1:38:52", "remaining_time": "3:34:20"} +{"current_steps": 513, "total_steps": 1622, "loss": 1.5152, "learning_rate": 1.729204424391377e-05, "epoch": 0.31617873651771955, "percentage": 31.63, "elapsed_time": "1:39:03", "remaining_time": "3:34:08"} +{"current_steps": 514, "total_steps": 1622, "loss": 1.5117, "learning_rate": 1.7277292744411632e-05, "epoch": 0.3167950693374422, "percentage": 31.69, "elapsed_time": "1:39:14", "remaining_time": "3:33:56"} +{"current_steps": 515, "total_steps": 1622, "loss": 1.6072, "learning_rate": 1.726250750384038e-05, "epoch": 0.31741140215716485, "percentage": 31.75, "elapsed_time": "1:39:25", "remaining_time": "3:33:43"} +{"current_steps": 516, "total_steps": 1622, "loss": 1.5218, "learning_rate": 1.724768859075158e-05, "epoch": 0.3180277349768875, "percentage": 31.81, "elapsed_time": "1:39:37", "remaining_time": "3:33:31"} +{"current_steps": 517, "total_steps": 1622, "loss": 1.5307, "learning_rate": 1.7232836073852922e-05, "epoch": 0.31864406779661014, "percentage": 31.87, "elapsed_time": "1:39:48", "remaining_time": "3:33:19"} +{"current_steps": 518, "total_steps": 1622, "loss": 1.6026, "learning_rate": 1.7217950022007898e-05, "epoch": 0.3192604006163328, "percentage": 31.94, "elapsed_time": "1:39:59", "remaining_time": "3:33:07"} +{"current_steps": 519, "total_steps": 1622, "loss": 1.6202, "learning_rate": 1.720303050423548e-05, "epoch": 0.3198767334360555, "percentage": 32.0, "elapsed_time": "1:40:11", "remaining_time": "3:32:54"} +{"current_steps": 520, "total_steps": 1622, "loss": 1.5397, "learning_rate": 1.718807758970982e-05, "epoch": 0.3204930662557781, "percentage": 32.06, "elapsed_time": "1:40:22", "remaining_time": "3:32:42"} +{"current_steps": 521, "total_steps": 1622, "loss": 1.594, "learning_rate": 1.71730913477599e-05, "epoch": 0.3211093990755008, "percentage": 32.12, "elapsed_time": "1:40:33", "remaining_time": "3:32:30"} +{"current_steps": 522, "total_steps": 1622, "loss": 1.57, "learning_rate": 1.715807184786922e-05, "epoch": 0.3217257318952234, "percentage": 32.18, "elapsed_time": "1:40:44", "remaining_time": "3:32:17"} +{"current_steps": 523, "total_steps": 1622, "loss": 1.5233, "learning_rate": 1.71430191596755e-05, "epoch": 0.3223420647149461, "percentage": 32.24, "elapsed_time": "1:40:56", "remaining_time": "3:32:07"} +{"current_steps": 524, "total_steps": 1622, "loss": 1.566, "learning_rate": 1.7127933352970318e-05, "epoch": 0.3229583975346687, "percentage": 32.31, "elapsed_time": "1:41:08", "remaining_time": "3:31:55"} +{"current_steps": 525, "total_steps": 1622, "loss": 1.481, "learning_rate": 1.7112814497698808e-05, "epoch": 0.3235747303543914, "percentage": 32.37, "elapsed_time": "1:41:19", "remaining_time": "3:31:43"} +{"current_steps": 526, "total_steps": 1622, "loss": 1.5263, "learning_rate": 1.7097662663959346e-05, "epoch": 0.324191063174114, "percentage": 32.43, "elapsed_time": "1:41:30", "remaining_time": "3:31:30"} +{"current_steps": 527, "total_steps": 1622, "loss": 1.5752, "learning_rate": 1.7082477922003198e-05, "epoch": 0.3248073959938367, "percentage": 32.49, "elapsed_time": "1:41:41", "remaining_time": "3:31:18"} +{"current_steps": 528, "total_steps": 1622, "loss": 1.557, "learning_rate": 1.7067260342234215e-05, "epoch": 0.3254237288135593, "percentage": 32.55, "elapsed_time": "1:41:53", "remaining_time": "3:31:06"} +{"current_steps": 529, "total_steps": 1622, "loss": 1.5779, "learning_rate": 1.7052009995208503e-05, "epoch": 0.326040061633282, "percentage": 32.61, "elapsed_time": "1:42:04", "remaining_time": "3:30:53"} +{"current_steps": 530, "total_steps": 1622, "loss": 1.5544, "learning_rate": 1.7036726951634083e-05, "epoch": 0.3266563944530046, "percentage": 32.68, "elapsed_time": "1:42:15", "remaining_time": "3:30:41"} +{"current_steps": 531, "total_steps": 1622, "loss": 1.4842, "learning_rate": 1.7021411282370586e-05, "epoch": 0.32727272727272727, "percentage": 32.74, "elapsed_time": "1:42:27", "remaining_time": "3:30:30"} +{"current_steps": 532, "total_steps": 1622, "loss": 1.4988, "learning_rate": 1.70060630584289e-05, "epoch": 0.32788906009244995, "percentage": 32.8, "elapsed_time": "1:42:38", "remaining_time": "3:30:18"} +{"current_steps": 533, "total_steps": 1622, "loss": 1.5674, "learning_rate": 1.6990682350970857e-05, "epoch": 0.32850539291217257, "percentage": 32.86, "elapsed_time": "1:42:49", "remaining_time": "3:30:05"} +{"current_steps": 534, "total_steps": 1622, "loss": 1.5785, "learning_rate": 1.69752692313089e-05, "epoch": 0.32912172573189524, "percentage": 32.92, "elapsed_time": "1:43:00", "remaining_time": "3:29:53"} +{"current_steps": 535, "total_steps": 1622, "loss": 1.475, "learning_rate": 1.695982377090575e-05, "epoch": 0.32973805855161786, "percentage": 32.98, "elapsed_time": "1:43:12", "remaining_time": "3:29:41"} +{"current_steps": 536, "total_steps": 1622, "loss": 1.5362, "learning_rate": 1.6944346041374075e-05, "epoch": 0.33035439137134054, "percentage": 33.05, "elapsed_time": "1:43:23", "remaining_time": "3:29:28"} +{"current_steps": 537, "total_steps": 1622, "loss": 1.5405, "learning_rate": 1.692883611447616e-05, "epoch": 0.33097072419106316, "percentage": 33.11, "elapsed_time": "1:43:34", "remaining_time": "3:29:16"} +{"current_steps": 538, "total_steps": 1622, "loss": 1.5367, "learning_rate": 1.691329406212356e-05, "epoch": 0.33158705701078584, "percentage": 33.17, "elapsed_time": "1:43:46", "remaining_time": "3:29:04"} +{"current_steps": 539, "total_steps": 1622, "loss": 1.5357, "learning_rate": 1.6897719956376804e-05, "epoch": 0.33220338983050846, "percentage": 33.23, "elapsed_time": "1:43:57", "remaining_time": "3:28:52"} +{"current_steps": 540, "total_steps": 1622, "loss": 1.5211, "learning_rate": 1.6882113869445013e-05, "epoch": 0.33281972265023113, "percentage": 33.29, "elapsed_time": "1:44:08", "remaining_time": "3:28:40"} +{"current_steps": 541, "total_steps": 1622, "loss": 1.5136, "learning_rate": 1.68664758736856e-05, "epoch": 0.33343605546995375, "percentage": 33.35, "elapsed_time": "1:44:19", "remaining_time": "3:28:28"} +{"current_steps": 542, "total_steps": 1622, "loss": 1.5435, "learning_rate": 1.685080604160392e-05, "epoch": 0.3340523882896764, "percentage": 33.42, "elapsed_time": "1:44:31", "remaining_time": "3:28:16"} +{"current_steps": 543, "total_steps": 1622, "loss": 1.5784, "learning_rate": 1.683510444585294e-05, "epoch": 0.3346687211093991, "percentage": 33.48, "elapsed_time": "1:44:42", "remaining_time": "3:28:03"} +{"current_steps": 544, "total_steps": 1622, "loss": 1.5591, "learning_rate": 1.6819371159232895e-05, "epoch": 0.3352850539291217, "percentage": 33.54, "elapsed_time": "1:44:53", "remaining_time": "3:27:51"} +{"current_steps": 545, "total_steps": 1622, "loss": 1.5302, "learning_rate": 1.680360625469095e-05, "epoch": 0.3359013867488444, "percentage": 33.6, "elapsed_time": "1:45:05", "remaining_time": "3:27:39"} +{"current_steps": 546, "total_steps": 1622, "loss": 1.5388, "learning_rate": 1.6787809805320874e-05, "epoch": 0.336517719568567, "percentage": 33.66, "elapsed_time": "1:45:16", "remaining_time": "3:27:27"} +{"current_steps": 547, "total_steps": 1622, "loss": 1.5988, "learning_rate": 1.677198188436269e-05, "epoch": 0.3371340523882897, "percentage": 33.72, "elapsed_time": "1:45:27", "remaining_time": "3:27:15"} +{"current_steps": 548, "total_steps": 1622, "loss": 1.5551, "learning_rate": 1.6756122565202342e-05, "epoch": 0.3377503852080123, "percentage": 33.79, "elapsed_time": "1:45:38", "remaining_time": "3:27:02"} +{"current_steps": 549, "total_steps": 1622, "loss": 1.6043, "learning_rate": 1.6740231921371345e-05, "epoch": 0.338366718027735, "percentage": 33.85, "elapsed_time": "1:45:51", "remaining_time": "3:26:53"} +{"current_steps": 550, "total_steps": 1622, "loss": 1.5358, "learning_rate": 1.6724310026546456e-05, "epoch": 0.3389830508474576, "percentage": 33.91, "elapsed_time": "1:46:02", "remaining_time": "3:26:41"} +{"current_steps": 551, "total_steps": 1622, "loss": 1.568, "learning_rate": 1.670835695454932e-05, "epoch": 0.3395993836671803, "percentage": 33.97, "elapsed_time": "1:46:27", "remaining_time": "3:26:55"} +{"current_steps": 552, "total_steps": 1622, "loss": 1.5071, "learning_rate": 1.669237277934614e-05, "epoch": 0.3402157164869029, "percentage": 34.03, "elapsed_time": "1:46:38", "remaining_time": "3:26:43"} +{"current_steps": 553, "total_steps": 1622, "loss": 1.5152, "learning_rate": 1.6676357575047335e-05, "epoch": 0.3408320493066256, "percentage": 34.09, "elapsed_time": "1:46:50", "remaining_time": "3:26:31"} +{"current_steps": 554, "total_steps": 1622, "loss": 1.5066, "learning_rate": 1.666031141590717e-05, "epoch": 0.3414483821263482, "percentage": 34.16, "elapsed_time": "1:47:01", "remaining_time": "3:26:19"} +{"current_steps": 555, "total_steps": 1622, "loss": 1.574, "learning_rate": 1.6644234376323456e-05, "epoch": 0.3420647149460709, "percentage": 34.22, "elapsed_time": "1:47:12", "remaining_time": "3:26:06"} +{"current_steps": 556, "total_steps": 1622, "loss": 1.5659, "learning_rate": 1.6628126530837163e-05, "epoch": 0.34268104776579356, "percentage": 34.28, "elapsed_time": "1:47:23", "remaining_time": "3:25:54"} +{"current_steps": 557, "total_steps": 1622, "loss": 1.5672, "learning_rate": 1.66119879541321e-05, "epoch": 0.3432973805855162, "percentage": 34.34, "elapsed_time": "1:47:35", "remaining_time": "3:25:42"} +{"current_steps": 558, "total_steps": 1622, "loss": 1.5343, "learning_rate": 1.6595818721034557e-05, "epoch": 0.34391371340523885, "percentage": 34.4, "elapsed_time": "1:47:46", "remaining_time": "3:25:30"} +{"current_steps": 559, "total_steps": 1622, "loss": 1.5305, "learning_rate": 1.657961890651296e-05, "epoch": 0.3445300462249615, "percentage": 34.46, "elapsed_time": "1:47:57", "remaining_time": "3:25:17"} +{"current_steps": 560, "total_steps": 1622, "loss": 1.513, "learning_rate": 1.6563388585677542e-05, "epoch": 0.34514637904468415, "percentage": 34.53, "elapsed_time": "1:48:08", "remaining_time": "3:25:05"} +{"current_steps": 561, "total_steps": 1622, "loss": 1.5459, "learning_rate": 1.6547127833779955e-05, "epoch": 0.34576271186440677, "percentage": 34.59, "elapsed_time": "1:48:20", "remaining_time": "3:24:53"} +{"current_steps": 562, "total_steps": 1622, "loss": 1.5661, "learning_rate": 1.6530836726212957e-05, "epoch": 0.34637904468412944, "percentage": 34.65, "elapsed_time": "1:48:31", "remaining_time": "3:24:41"} +{"current_steps": 563, "total_steps": 1622, "loss": 1.564, "learning_rate": 1.651451533851005e-05, "epoch": 0.34699537750385206, "percentage": 34.71, "elapsed_time": "1:48:42", "remaining_time": "3:24:29"} +{"current_steps": 564, "total_steps": 1622, "loss": 1.5824, "learning_rate": 1.6498163746345124e-05, "epoch": 0.34761171032357474, "percentage": 34.77, "elapsed_time": "1:48:53", "remaining_time": "3:24:16"} +{"current_steps": 565, "total_steps": 1622, "loss": 1.5489, "learning_rate": 1.6481782025532114e-05, "epoch": 0.34822804314329736, "percentage": 34.83, "elapsed_time": "1:49:05", "remaining_time": "3:24:04"} +{"current_steps": 566, "total_steps": 1622, "loss": 1.5219, "learning_rate": 1.6465370252024646e-05, "epoch": 0.34884437596302004, "percentage": 34.9, "elapsed_time": "1:49:16", "remaining_time": "3:23:52"} +{"current_steps": 567, "total_steps": 1622, "loss": 1.5178, "learning_rate": 1.644892850191569e-05, "epoch": 0.34946070878274266, "percentage": 34.96, "elapsed_time": "1:49:27", "remaining_time": "3:23:40"} +{"current_steps": 568, "total_steps": 1622, "loss": 1.5482, "learning_rate": 1.6432456851437192e-05, "epoch": 0.35007704160246533, "percentage": 35.02, "elapsed_time": "1:49:38", "remaining_time": "3:23:28"} +{"current_steps": 569, "total_steps": 1622, "loss": 1.5399, "learning_rate": 1.6415955376959738e-05, "epoch": 0.350693374422188, "percentage": 35.08, "elapsed_time": "1:49:50", "remaining_time": "3:23:15"} +{"current_steps": 570, "total_steps": 1622, "loss": 1.5387, "learning_rate": 1.6399424154992193e-05, "epoch": 0.35130970724191063, "percentage": 35.14, "elapsed_time": "1:50:01", "remaining_time": "3:23:03"} +{"current_steps": 571, "total_steps": 1622, "loss": 1.5638, "learning_rate": 1.638286326218134e-05, "epoch": 0.3519260400616333, "percentage": 35.2, "elapsed_time": "1:50:12", "remaining_time": "3:22:51"} +{"current_steps": 572, "total_steps": 1622, "loss": 1.5641, "learning_rate": 1.6366272775311533e-05, "epoch": 0.3525423728813559, "percentage": 35.27, "elapsed_time": "1:50:23", "remaining_time": "3:22:39"} +{"current_steps": 573, "total_steps": 1622, "loss": 1.6044, "learning_rate": 1.6349652771304345e-05, "epoch": 0.3531587057010786, "percentage": 35.33, "elapsed_time": "1:50:35", "remaining_time": "3:22:26"} +{"current_steps": 574, "total_steps": 1622, "loss": 1.5316, "learning_rate": 1.633300332721819e-05, "epoch": 0.3537750385208012, "percentage": 35.39, "elapsed_time": "1:50:46", "remaining_time": "3:22:14"} +{"current_steps": 575, "total_steps": 1622, "loss": 1.6052, "learning_rate": 1.6316324520248003e-05, "epoch": 0.3543913713405239, "percentage": 35.45, "elapsed_time": "1:50:57", "remaining_time": "3:22:02"} +{"current_steps": 576, "total_steps": 1622, "loss": 1.538, "learning_rate": 1.629961642772483e-05, "epoch": 0.3550077041602465, "percentage": 35.51, "elapsed_time": "1:51:08", "remaining_time": "3:21:50"} +{"current_steps": 577, "total_steps": 1622, "loss": 1.5543, "learning_rate": 1.628287912711553e-05, "epoch": 0.3556240369799692, "percentage": 35.57, "elapsed_time": "1:51:20", "remaining_time": "3:21:38"} +{"current_steps": 578, "total_steps": 1622, "loss": 1.5269, "learning_rate": 1.626611269602236e-05, "epoch": 0.3562403697996918, "percentage": 35.64, "elapsed_time": "1:51:31", "remaining_time": "3:21:26"} +{"current_steps": 579, "total_steps": 1622, "loss": 1.5458, "learning_rate": 1.624931721218266e-05, "epoch": 0.3568567026194145, "percentage": 35.7, "elapsed_time": "1:51:42", "remaining_time": "3:21:13"} +{"current_steps": 580, "total_steps": 1622, "loss": 1.4988, "learning_rate": 1.6232492753468457e-05, "epoch": 0.3574730354391371, "percentage": 35.76, "elapsed_time": "1:51:53", "remaining_time": "3:21:01"} +{"current_steps": 581, "total_steps": 1622, "loss": 1.4894, "learning_rate": 1.6215639397886125e-05, "epoch": 0.3580893682588598, "percentage": 35.82, "elapsed_time": "1:52:05", "remaining_time": "3:20:49"} +{"current_steps": 582, "total_steps": 1622, "loss": 1.5331, "learning_rate": 1.6198757223576017e-05, "epoch": 0.35870570107858246, "percentage": 35.88, "elapsed_time": "1:52:16", "remaining_time": "3:20:37"} +{"current_steps": 583, "total_steps": 1622, "loss": 1.5848, "learning_rate": 1.6181846308812113e-05, "epoch": 0.3593220338983051, "percentage": 35.94, "elapsed_time": "1:52:27", "remaining_time": "3:20:25"} +{"current_steps": 584, "total_steps": 1622, "loss": 1.5524, "learning_rate": 1.6164906732001636e-05, "epoch": 0.35993836671802776, "percentage": 36.0, "elapsed_time": "1:52:38", "remaining_time": "3:20:13"} +{"current_steps": 585, "total_steps": 1622, "loss": 1.5444, "learning_rate": 1.6147938571684697e-05, "epoch": 0.3605546995377504, "percentage": 36.07, "elapsed_time": "1:52:50", "remaining_time": "3:20:00"} +{"current_steps": 586, "total_steps": 1622, "loss": 1.6079, "learning_rate": 1.6130941906533953e-05, "epoch": 0.36117103235747305, "percentage": 36.13, "elapsed_time": "1:53:01", "remaining_time": "3:19:48"} +{"current_steps": 587, "total_steps": 1622, "loss": 1.5002, "learning_rate": 1.6113916815354205e-05, "epoch": 0.3617873651771957, "percentage": 36.19, "elapsed_time": "1:53:12", "remaining_time": "3:19:36"} +{"current_steps": 588, "total_steps": 1622, "loss": 1.5127, "learning_rate": 1.6096863377082057e-05, "epoch": 0.36240369799691835, "percentage": 36.25, "elapsed_time": "1:53:23", "remaining_time": "3:19:24"} +{"current_steps": 589, "total_steps": 1622, "loss": 1.5876, "learning_rate": 1.607978167078555e-05, "epoch": 0.36302003081664097, "percentage": 36.31, "elapsed_time": "1:53:34", "remaining_time": "3:19:12"} +{"current_steps": 590, "total_steps": 1622, "loss": 1.5072, "learning_rate": 1.6062671775663772e-05, "epoch": 0.36363636363636365, "percentage": 36.37, "elapsed_time": "1:53:46", "remaining_time": "3:19:00"} +{"current_steps": 591, "total_steps": 1622, "loss": 1.5434, "learning_rate": 1.604553377104653e-05, "epoch": 0.36425269645608627, "percentage": 36.44, "elapsed_time": "1:53:57", "remaining_time": "3:18:47"} +{"current_steps": 592, "total_steps": 1622, "loss": 1.5771, "learning_rate": 1.6028367736393948e-05, "epoch": 0.36486902927580894, "percentage": 36.5, "elapsed_time": "1:54:08", "remaining_time": "3:18:35"} +{"current_steps": 593, "total_steps": 1622, "loss": 1.5413, "learning_rate": 1.601117375129611e-05, "epoch": 0.36548536209553156, "percentage": 36.56, "elapsed_time": "1:54:19", "remaining_time": "3:18:23"} +{"current_steps": 594, "total_steps": 1622, "loss": 1.5004, "learning_rate": 1.59939518954727e-05, "epoch": 0.36610169491525424, "percentage": 36.62, "elapsed_time": "1:54:31", "remaining_time": "3:18:11"} +{"current_steps": 595, "total_steps": 1622, "loss": 1.4708, "learning_rate": 1.5976702248772612e-05, "epoch": 0.3667180277349769, "percentage": 36.68, "elapsed_time": "1:54:42", "remaining_time": "3:17:59"} +{"current_steps": 596, "total_steps": 1622, "loss": 1.4789, "learning_rate": 1.5959424891173603e-05, "epoch": 0.36733436055469953, "percentage": 36.74, "elapsed_time": "1:54:53", "remaining_time": "3:17:47"} +{"current_steps": 597, "total_steps": 1622, "loss": 1.5537, "learning_rate": 1.594211990278191e-05, "epoch": 0.3679506933744222, "percentage": 36.81, "elapsed_time": "1:55:04", "remaining_time": "3:17:35"} +{"current_steps": 598, "total_steps": 1622, "loss": 1.585, "learning_rate": 1.5924787363831867e-05, "epoch": 0.36856702619414483, "percentage": 36.87, "elapsed_time": "1:55:16", "remaining_time": "3:17:22"} +{"current_steps": 599, "total_steps": 1622, "loss": 1.5863, "learning_rate": 1.590742735468557e-05, "epoch": 0.3691833590138675, "percentage": 36.93, "elapsed_time": "1:55:27", "remaining_time": "3:17:10"} +{"current_steps": 600, "total_steps": 1622, "loss": 1.5641, "learning_rate": 1.589003995583245e-05, "epoch": 0.3697996918335901, "percentage": 36.99, "elapsed_time": "1:55:38", "remaining_time": "3:16:58"} +{"current_steps": 601, "total_steps": 1622, "loss": 1.5987, "learning_rate": 1.5872625247888965e-05, "epoch": 0.3704160246533128, "percentage": 37.05, "elapsed_time": "1:56:04", "remaining_time": "3:17:12"} +{"current_steps": 602, "total_steps": 1622, "loss": 1.4811, "learning_rate": 1.5855183311598156e-05, "epoch": 0.3710323574730354, "percentage": 37.11, "elapsed_time": "1:56:16", "remaining_time": "3:17:00"} +{"current_steps": 603, "total_steps": 1622, "loss": 1.5531, "learning_rate": 1.583771422782933e-05, "epoch": 0.3716486902927581, "percentage": 37.18, "elapsed_time": "1:56:27", "remaining_time": "3:16:47"} +{"current_steps": 604, "total_steps": 1622, "loss": 1.4662, "learning_rate": 1.5820218077577654e-05, "epoch": 0.3722650231124807, "percentage": 37.24, "elapsed_time": "1:56:38", "remaining_time": "3:16:35"} +{"current_steps": 605, "total_steps": 1622, "loss": 1.508, "learning_rate": 1.5802694941963796e-05, "epoch": 0.3728813559322034, "percentage": 37.3, "elapsed_time": "1:56:49", "remaining_time": "3:16:23"} +{"current_steps": 606, "total_steps": 1622, "loss": 1.5335, "learning_rate": 1.5785144902233535e-05, "epoch": 0.373497688751926, "percentage": 37.36, "elapsed_time": "1:57:01", "remaining_time": "3:16:11"} +{"current_steps": 607, "total_steps": 1622, "loss": 1.54, "learning_rate": 1.5767568039757393e-05, "epoch": 0.3741140215716487, "percentage": 37.42, "elapsed_time": "1:57:12", "remaining_time": "3:15:59"} +{"current_steps": 608, "total_steps": 1622, "loss": 1.5439, "learning_rate": 1.5749964436030252e-05, "epoch": 0.37473035439137137, "percentage": 37.48, "elapsed_time": "1:57:23", "remaining_time": "3:15:47"} +{"current_steps": 609, "total_steps": 1622, "loss": 1.5937, "learning_rate": 1.5732334172670985e-05, "epoch": 0.375346687211094, "percentage": 37.55, "elapsed_time": "1:57:34", "remaining_time": "3:15:35"} +{"current_steps": 610, "total_steps": 1622, "loss": 1.5507, "learning_rate": 1.5714677331422065e-05, "epoch": 0.37596302003081666, "percentage": 37.61, "elapsed_time": "1:57:46", "remaining_time": "3:15:22"} +{"current_steps": 611, "total_steps": 1622, "loss": 1.523, "learning_rate": 1.56969939941492e-05, "epoch": 0.3765793528505393, "percentage": 37.67, "elapsed_time": "1:57:57", "remaining_time": "3:15:10"} +{"current_steps": 612, "total_steps": 1622, "loss": 1.5814, "learning_rate": 1.567928424284094e-05, "epoch": 0.37719568567026196, "percentage": 37.73, "elapsed_time": "1:58:08", "remaining_time": "3:14:59"} +{"current_steps": 613, "total_steps": 1622, "loss": 1.5113, "learning_rate": 1.566154815960831e-05, "epoch": 0.3778120184899846, "percentage": 37.79, "elapsed_time": "1:58:20", "remaining_time": "3:14:46"} +{"current_steps": 614, "total_steps": 1622, "loss": 1.4566, "learning_rate": 1.5643785826684424e-05, "epoch": 0.37842835130970726, "percentage": 37.85, "elapsed_time": "1:58:31", "remaining_time": "3:14:34"} +{"current_steps": 615, "total_steps": 1622, "loss": 1.5479, "learning_rate": 1.5625997326424086e-05, "epoch": 0.3790446841294299, "percentage": 37.92, "elapsed_time": "1:58:42", "remaining_time": "3:14:22"} +{"current_steps": 616, "total_steps": 1622, "loss": 1.55, "learning_rate": 1.5608182741303447e-05, "epoch": 0.37966101694915255, "percentage": 37.98, "elapsed_time": "1:58:53", "remaining_time": "3:14:10"} +{"current_steps": 617, "total_steps": 1622, "loss": 1.5982, "learning_rate": 1.5590342153919585e-05, "epoch": 0.3802773497688752, "percentage": 38.04, "elapsed_time": "1:59:05", "remaining_time": "3:13:58"} +{"current_steps": 618, "total_steps": 1622, "loss": 1.5352, "learning_rate": 1.557247564699014e-05, "epoch": 0.38089368258859785, "percentage": 38.1, "elapsed_time": "1:59:16", "remaining_time": "3:13:46"} +{"current_steps": 619, "total_steps": 1622, "loss": 1.5724, "learning_rate": 1.5554583303352933e-05, "epoch": 0.38151001540832047, "percentage": 38.16, "elapsed_time": "1:59:27", "remaining_time": "3:13:34"} +{"current_steps": 620, "total_steps": 1622, "loss": 1.543, "learning_rate": 1.553666520596557e-05, "epoch": 0.38212634822804314, "percentage": 38.22, "elapsed_time": "1:59:38", "remaining_time": "3:13:22"} +{"current_steps": 621, "total_steps": 1622, "loss": 1.5342, "learning_rate": 1.551872143790506e-05, "epoch": 0.3827426810477658, "percentage": 38.29, "elapsed_time": "1:59:50", "remaining_time": "3:13:10"} +{"current_steps": 622, "total_steps": 1622, "loss": 1.5366, "learning_rate": 1.5500752082367453e-05, "epoch": 0.38335901386748844, "percentage": 38.35, "elapsed_time": "2:00:01", "remaining_time": "3:12:57"} +{"current_steps": 623, "total_steps": 1622, "loss": 1.5893, "learning_rate": 1.5482757222667414e-05, "epoch": 0.3839753466872111, "percentage": 38.41, "elapsed_time": "2:00:12", "remaining_time": "3:12:45"} +{"current_steps": 624, "total_steps": 1622, "loss": 1.5786, "learning_rate": 1.546473694223787e-05, "epoch": 0.38459167950693374, "percentage": 38.47, "elapsed_time": "2:00:24", "remaining_time": "3:12:33"} +{"current_steps": 625, "total_steps": 1622, "loss": 1.5808, "learning_rate": 1.5446691324629607e-05, "epoch": 0.3852080123266564, "percentage": 38.53, "elapsed_time": "2:00:35", "remaining_time": "3:12:21"} +{"current_steps": 626, "total_steps": 1622, "loss": 1.5459, "learning_rate": 1.5428620453510884e-05, "epoch": 0.38582434514637903, "percentage": 38.59, "elapsed_time": "2:00:46", "remaining_time": "3:12:09"} +{"current_steps": 627, "total_steps": 1622, "loss": 1.5779, "learning_rate": 1.541052441266705e-05, "epoch": 0.3864406779661017, "percentage": 38.66, "elapsed_time": "2:00:57", "remaining_time": "3:11:57"} +{"current_steps": 628, "total_steps": 1622, "loss": 1.5481, "learning_rate": 1.539240328600015e-05, "epoch": 0.38705701078582433, "percentage": 38.72, "elapsed_time": "2:01:09", "remaining_time": "3:11:45"} +{"current_steps": 629, "total_steps": 1622, "loss": 1.5269, "learning_rate": 1.5374257157528543e-05, "epoch": 0.387673343605547, "percentage": 38.78, "elapsed_time": "2:01:20", "remaining_time": "3:11:33"} +{"current_steps": 630, "total_steps": 1622, "loss": 1.5431, "learning_rate": 1.5356086111386515e-05, "epoch": 0.3882896764252696, "percentage": 38.84, "elapsed_time": "2:01:31", "remaining_time": "3:11:21"} +{"current_steps": 631, "total_steps": 1622, "loss": 1.5606, "learning_rate": 1.5337890231823868e-05, "epoch": 0.3889060092449923, "percentage": 38.9, "elapsed_time": "2:01:42", "remaining_time": "3:11:09"} +{"current_steps": 632, "total_steps": 1622, "loss": 1.5793, "learning_rate": 1.5319669603205552e-05, "epoch": 0.3895223420647149, "percentage": 38.96, "elapsed_time": "2:01:54", "remaining_time": "3:10:57"} +{"current_steps": 633, "total_steps": 1622, "loss": 1.5327, "learning_rate": 1.5301424310011265e-05, "epoch": 0.3901386748844376, "percentage": 39.03, "elapsed_time": "2:02:05", "remaining_time": "3:10:45"} +{"current_steps": 634, "total_steps": 1622, "loss": 1.5367, "learning_rate": 1.5283154436835064e-05, "epoch": 0.3907550077041603, "percentage": 39.09, "elapsed_time": "2:02:16", "remaining_time": "3:10:33"} +{"current_steps": 635, "total_steps": 1622, "loss": 1.6084, "learning_rate": 1.5264860068384962e-05, "epoch": 0.3913713405238829, "percentage": 39.15, "elapsed_time": "2:02:28", "remaining_time": "3:10:21"} +{"current_steps": 636, "total_steps": 1622, "loss": 1.5101, "learning_rate": 1.5246541289482557e-05, "epoch": 0.39198767334360557, "percentage": 39.21, "elapsed_time": "2:02:39", "remaining_time": "3:10:09"} +{"current_steps": 637, "total_steps": 1622, "loss": 1.5689, "learning_rate": 1.5228198185062617e-05, "epoch": 0.3926040061633282, "percentage": 39.27, "elapsed_time": "2:02:50", "remaining_time": "3:09:57"} +{"current_steps": 638, "total_steps": 1622, "loss": 1.5404, "learning_rate": 1.5209830840172695e-05, "epoch": 0.39322033898305087, "percentage": 39.33, "elapsed_time": "2:03:01", "remaining_time": "3:09:44"} +{"current_steps": 639, "total_steps": 1622, "loss": 1.5491, "learning_rate": 1.5191439339972735e-05, "epoch": 0.3938366718027735, "percentage": 39.4, "elapsed_time": "2:03:12", "remaining_time": "3:09:32"} +{"current_steps": 640, "total_steps": 1622, "loss": 1.4902, "learning_rate": 1.517302376973468e-05, "epoch": 0.39445300462249616, "percentage": 39.46, "elapsed_time": "2:03:24", "remaining_time": "3:09:20"} +{"current_steps": 641, "total_steps": 1622, "loss": 1.5109, "learning_rate": 1.5154584214842074e-05, "epoch": 0.3950693374422188, "percentage": 39.52, "elapsed_time": "2:03:35", "remaining_time": "3:09:08"} +{"current_steps": 642, "total_steps": 1622, "loss": 1.559, "learning_rate": 1.513612076078966e-05, "epoch": 0.39568567026194146, "percentage": 39.58, "elapsed_time": "2:03:46", "remaining_time": "3:08:56"} +{"current_steps": 643, "total_steps": 1622, "loss": 1.521, "learning_rate": 1.5117633493183e-05, "epoch": 0.3963020030816641, "percentage": 39.64, "elapsed_time": "2:03:57", "remaining_time": "3:08:44"} +{"current_steps": 644, "total_steps": 1622, "loss": 1.5444, "learning_rate": 1.5099122497738043e-05, "epoch": 0.39691833590138675, "percentage": 39.7, "elapsed_time": "2:04:09", "remaining_time": "3:08:32"} +{"current_steps": 645, "total_steps": 1622, "loss": 1.5623, "learning_rate": 1.5080587860280787e-05, "epoch": 0.3975346687211094, "percentage": 39.77, "elapsed_time": "2:04:20", "remaining_time": "3:08:20"} +{"current_steps": 646, "total_steps": 1622, "loss": 1.5004, "learning_rate": 1.5062029666746814e-05, "epoch": 0.39815100154083205, "percentage": 39.83, "elapsed_time": "2:04:31", "remaining_time": "3:08:08"} +{"current_steps": 647, "total_steps": 1622, "loss": 1.4253, "learning_rate": 1.5043448003180943e-05, "epoch": 0.3987673343605547, "percentage": 39.89, "elapsed_time": "2:04:42", "remaining_time": "3:07:56"} +{"current_steps": 648, "total_steps": 1622, "loss": 1.6116, "learning_rate": 1.5024842955736804e-05, "epoch": 0.39938366718027735, "percentage": 39.95, "elapsed_time": "2:04:54", "remaining_time": "3:07:44"} +{"current_steps": 649, "total_steps": 1622, "loss": 1.5324, "learning_rate": 1.5006214610676449e-05, "epoch": 0.4, "percentage": 40.01, "elapsed_time": "2:05:05", "remaining_time": "3:07:32"} +{"current_steps": 650, "total_steps": 1622, "loss": 1.5599, "learning_rate": 1.4987563054369938e-05, "epoch": 0.40061633281972264, "percentage": 40.07, "elapsed_time": "2:05:16", "remaining_time": "3:07:20"} +{"current_steps": 651, "total_steps": 1622, "loss": 1.5426, "learning_rate": 1.4968888373294972e-05, "epoch": 0.4012326656394453, "percentage": 40.14, "elapsed_time": "2:05:42", "remaining_time": "3:07:29"} +{"current_steps": 652, "total_steps": 1622, "loss": 1.5251, "learning_rate": 1.4950190654036447e-05, "epoch": 0.40184899845916794, "percentage": 40.2, "elapsed_time": "2:05:53", "remaining_time": "3:07:17"} +{"current_steps": 653, "total_steps": 1622, "loss": 1.5191, "learning_rate": 1.493146998328609e-05, "epoch": 0.4024653312788906, "percentage": 40.26, "elapsed_time": "2:06:04", "remaining_time": "3:07:05"} +{"current_steps": 654, "total_steps": 1622, "loss": 1.5363, "learning_rate": 1.4912726447842037e-05, "epoch": 0.40308166409861323, "percentage": 40.32, "elapsed_time": "2:06:15", "remaining_time": "3:06:53"} +{"current_steps": 655, "total_steps": 1622, "loss": 1.4986, "learning_rate": 1.489396013460843e-05, "epoch": 0.4036979969183359, "percentage": 40.38, "elapsed_time": "2:06:27", "remaining_time": "3:06:41"} +{"current_steps": 656, "total_steps": 1622, "loss": 1.5753, "learning_rate": 1.4875171130595032e-05, "epoch": 0.40431432973805853, "percentage": 40.44, "elapsed_time": "2:06:38", "remaining_time": "3:06:29"} +{"current_steps": 657, "total_steps": 1622, "loss": 1.5148, "learning_rate": 1.4856359522916801e-05, "epoch": 0.4049306625577812, "percentage": 40.51, "elapsed_time": "2:06:49", "remaining_time": "3:06:17"} +{"current_steps": 658, "total_steps": 1622, "loss": 1.5684, "learning_rate": 1.4837525398793505e-05, "epoch": 0.4055469953775038, "percentage": 40.57, "elapsed_time": "2:07:00", "remaining_time": "3:06:04"} +{"current_steps": 659, "total_steps": 1622, "loss": 1.5005, "learning_rate": 1.4818668845549305e-05, "epoch": 0.4061633281972265, "percentage": 40.63, "elapsed_time": "2:07:12", "remaining_time": "3:05:52"} +{"current_steps": 660, "total_steps": 1622, "loss": 1.4922, "learning_rate": 1.479978995061235e-05, "epoch": 0.4067796610169492, "percentage": 40.69, "elapsed_time": "2:07:23", "remaining_time": "3:05:40"} +{"current_steps": 661, "total_steps": 1622, "loss": 1.4836, "learning_rate": 1.478088880151438e-05, "epoch": 0.4073959938366718, "percentage": 40.75, "elapsed_time": "2:07:34", "remaining_time": "3:05:28"} +{"current_steps": 662, "total_steps": 1622, "loss": 1.544, "learning_rate": 1.4761965485890324e-05, "epoch": 0.4080123266563945, "percentage": 40.81, "elapsed_time": "2:07:45", "remaining_time": "3:05:16"} +{"current_steps": 663, "total_steps": 1622, "loss": 1.588, "learning_rate": 1.4743020091477868e-05, "epoch": 0.4086286594761171, "percentage": 40.88, "elapsed_time": "2:07:57", "remaining_time": "3:05:04"} +{"current_steps": 664, "total_steps": 1622, "loss": 1.4861, "learning_rate": 1.4724052706117089e-05, "epoch": 0.40924499229583977, "percentage": 40.94, "elapsed_time": "2:08:08", "remaining_time": "3:04:52"} +{"current_steps": 665, "total_steps": 1622, "loss": 1.487, "learning_rate": 1.470506341775e-05, "epoch": 0.4098613251155624, "percentage": 41.0, "elapsed_time": "2:08:19", "remaining_time": "3:04:40"} +{"current_steps": 666, "total_steps": 1622, "loss": 1.541, "learning_rate": 1.4686052314420185e-05, "epoch": 0.41047765793528507, "percentage": 41.06, "elapsed_time": "2:08:30", "remaining_time": "3:04:28"} +{"current_steps": 667, "total_steps": 1622, "loss": 1.6161, "learning_rate": 1.4667019484272369e-05, "epoch": 0.4110939907550077, "percentage": 41.12, "elapsed_time": "2:08:42", "remaining_time": "3:04:16"} +{"current_steps": 668, "total_steps": 1622, "loss": 1.5886, "learning_rate": 1.4647965015552003e-05, "epoch": 0.41171032357473036, "percentage": 41.18, "elapsed_time": "2:08:53", "remaining_time": "3:04:04"} +{"current_steps": 669, "total_steps": 1622, "loss": 1.5869, "learning_rate": 1.4628888996604878e-05, "epoch": 0.412326656394453, "percentage": 41.25, "elapsed_time": "2:09:04", "remaining_time": "3:03:52"} +{"current_steps": 670, "total_steps": 1622, "loss": 1.5499, "learning_rate": 1.4609791515876696e-05, "epoch": 0.41294298921417566, "percentage": 41.31, "elapsed_time": "2:09:15", "remaining_time": "3:03:40"} +{"current_steps": 671, "total_steps": 1622, "loss": 1.5878, "learning_rate": 1.4590672661912671e-05, "epoch": 0.4135593220338983, "percentage": 41.37, "elapsed_time": "2:09:26", "remaining_time": "3:03:28"} +{"current_steps": 672, "total_steps": 1622, "loss": 1.525, "learning_rate": 1.4571532523357101e-05, "epoch": 0.41417565485362096, "percentage": 41.43, "elapsed_time": "2:09:38", "remaining_time": "3:03:15"} +{"current_steps": 673, "total_steps": 1622, "loss": 1.6164, "learning_rate": 1.455237118895299e-05, "epoch": 0.41479198767334363, "percentage": 41.49, "elapsed_time": "2:09:49", "remaining_time": "3:03:04"} +{"current_steps": 674, "total_steps": 1622, "loss": 1.5369, "learning_rate": 1.4533188747541596e-05, "epoch": 0.41540832049306625, "percentage": 41.55, "elapsed_time": "2:10:00", "remaining_time": "3:02:51"} +{"current_steps": 675, "total_steps": 1622, "loss": 1.5822, "learning_rate": 1.4513985288062054e-05, "epoch": 0.41602465331278893, "percentage": 41.62, "elapsed_time": "2:10:12", "remaining_time": "3:02:39"} +{"current_steps": 676, "total_steps": 1622, "loss": 1.5056, "learning_rate": 1.4494760899550944e-05, "epoch": 0.41664098613251155, "percentage": 41.68, "elapsed_time": "2:10:23", "remaining_time": "3:02:28"} +{"current_steps": 677, "total_steps": 1622, "loss": 1.5423, "learning_rate": 1.4475515671141878e-05, "epoch": 0.4172573189522342, "percentage": 41.74, "elapsed_time": "2:10:34", "remaining_time": "3:02:16"} +{"current_steps": 678, "total_steps": 1622, "loss": 1.5148, "learning_rate": 1.4456249692065098e-05, "epoch": 0.41787365177195684, "percentage": 41.8, "elapsed_time": "2:10:46", "remaining_time": "3:02:04"} +{"current_steps": 679, "total_steps": 1622, "loss": 1.5291, "learning_rate": 1.4436963051647058e-05, "epoch": 0.4184899845916795, "percentage": 41.86, "elapsed_time": "2:10:57", "remaining_time": "3:01:52"} +{"current_steps": 680, "total_steps": 1622, "loss": 1.5548, "learning_rate": 1.4417655839309998e-05, "epoch": 0.41910631741140214, "percentage": 41.92, "elapsed_time": "2:11:08", "remaining_time": "3:01:40"} +{"current_steps": 681, "total_steps": 1622, "loss": 1.5008, "learning_rate": 1.4398328144571557e-05, "epoch": 0.4197226502311248, "percentage": 41.99, "elapsed_time": "2:11:19", "remaining_time": "3:01:28"} +{"current_steps": 682, "total_steps": 1622, "loss": 1.6075, "learning_rate": 1.4378980057044316e-05, "epoch": 0.42033898305084744, "percentage": 42.05, "elapsed_time": "2:11:31", "remaining_time": "3:01:16"} +{"current_steps": 683, "total_steps": 1622, "loss": 1.4609, "learning_rate": 1.4359611666435432e-05, "epoch": 0.4209553158705701, "percentage": 42.11, "elapsed_time": "2:11:42", "remaining_time": "3:01:04"} +{"current_steps": 684, "total_steps": 1622, "loss": 1.4859, "learning_rate": 1.434022306254618e-05, "epoch": 0.42157164869029273, "percentage": 42.17, "elapsed_time": "2:11:53", "remaining_time": "3:00:52"} +{"current_steps": 685, "total_steps": 1622, "loss": 1.5438, "learning_rate": 1.4320814335271558e-05, "epoch": 0.4221879815100154, "percentage": 42.23, "elapsed_time": "2:12:04", "remaining_time": "3:00:40"} +{"current_steps": 686, "total_steps": 1622, "loss": 1.5867, "learning_rate": 1.430138557459987e-05, "epoch": 0.4228043143297381, "percentage": 42.29, "elapsed_time": "2:12:16", "remaining_time": "3:00:28"} +{"current_steps": 687, "total_steps": 1622, "loss": 1.5645, "learning_rate": 1.4281936870612301e-05, "epoch": 0.4234206471494607, "percentage": 42.36, "elapsed_time": "2:12:27", "remaining_time": "3:00:16"} +{"current_steps": 688, "total_steps": 1622, "loss": 1.6131, "learning_rate": 1.4262468313482498e-05, "epoch": 0.4240369799691834, "percentage": 42.42, "elapsed_time": "2:12:38", "remaining_time": "3:00:04"} +{"current_steps": 689, "total_steps": 1622, "loss": 1.5797, "learning_rate": 1.4242979993476172e-05, "epoch": 0.424653312788906, "percentage": 42.48, "elapsed_time": "2:12:49", "remaining_time": "2:59:52"} +{"current_steps": 690, "total_steps": 1622, "loss": 1.4769, "learning_rate": 1.4223472000950649e-05, "epoch": 0.4252696456086287, "percentage": 42.54, "elapsed_time": "2:13:01", "remaining_time": "2:59:40"} +{"current_steps": 691, "total_steps": 1622, "loss": 1.4834, "learning_rate": 1.4203944426354466e-05, "epoch": 0.4258859784283513, "percentage": 42.6, "elapsed_time": "2:13:12", "remaining_time": "2:59:28"} +{"current_steps": 692, "total_steps": 1622, "loss": 1.4711, "learning_rate": 1.4184397360226967e-05, "epoch": 0.426502311248074, "percentage": 42.66, "elapsed_time": "2:13:23", "remaining_time": "2:59:16"} +{"current_steps": 693, "total_steps": 1622, "loss": 1.5435, "learning_rate": 1.4164830893197855e-05, "epoch": 0.4271186440677966, "percentage": 42.73, "elapsed_time": "2:13:34", "remaining_time": "2:59:04"} +{"current_steps": 694, "total_steps": 1622, "loss": 1.5453, "learning_rate": 1.4145245115986787e-05, "epoch": 0.42773497688751927, "percentage": 42.79, "elapsed_time": "2:13:46", "remaining_time": "2:58:52"} +{"current_steps": 695, "total_steps": 1622, "loss": 1.5264, "learning_rate": 1.4125640119402957e-05, "epoch": 0.4283513097072419, "percentage": 42.85, "elapsed_time": "2:13:57", "remaining_time": "2:58:40"} +{"current_steps": 696, "total_steps": 1622, "loss": 1.4822, "learning_rate": 1.4106015994344667e-05, "epoch": 0.42896764252696457, "percentage": 42.91, "elapsed_time": "2:14:08", "remaining_time": "2:58:28"} +{"current_steps": 697, "total_steps": 1622, "loss": 1.4625, "learning_rate": 1.40863728317989e-05, "epoch": 0.4295839753466872, "percentage": 42.97, "elapsed_time": "2:14:19", "remaining_time": "2:58:16"} +{"current_steps": 698, "total_steps": 1622, "loss": 1.5189, "learning_rate": 1.4066710722840922e-05, "epoch": 0.43020030816640986, "percentage": 43.03, "elapsed_time": "2:14:31", "remaining_time": "2:58:04"} +{"current_steps": 699, "total_steps": 1622, "loss": 1.5863, "learning_rate": 1.4047029758633823e-05, "epoch": 0.43081664098613254, "percentage": 43.09, "elapsed_time": "2:14:42", "remaining_time": "2:57:52"} +{"current_steps": 700, "total_steps": 1622, "loss": 1.5178, "learning_rate": 1.402733003042814e-05, "epoch": 0.43143297380585516, "percentage": 43.16, "elapsed_time": "2:14:53", "remaining_time": "2:57:40"} +{"current_steps": 701, "total_steps": 1622, "loss": 1.4893, "learning_rate": 1.4007611629561385e-05, "epoch": 0.43204930662557783, "percentage": 43.22, "elapsed_time": "2:15:19", "remaining_time": "2:57:47"} +{"current_steps": 702, "total_steps": 1622, "loss": 1.5167, "learning_rate": 1.3987874647457657e-05, "epoch": 0.43266563944530045, "percentage": 43.28, "elapsed_time": "2:15:30", "remaining_time": "2:57:35"} +{"current_steps": 703, "total_steps": 1622, "loss": 1.5463, "learning_rate": 1.3968119175627214e-05, "epoch": 0.43328197226502313, "percentage": 43.34, "elapsed_time": "2:15:42", "remaining_time": "2:57:24"} +{"current_steps": 704, "total_steps": 1622, "loss": 1.5334, "learning_rate": 1.3948345305666027e-05, "epoch": 0.43389830508474575, "percentage": 43.4, "elapsed_time": "2:15:53", "remaining_time": "2:57:12"} +{"current_steps": 705, "total_steps": 1622, "loss": 1.4944, "learning_rate": 1.3928553129255375e-05, "epoch": 0.4345146379044684, "percentage": 43.46, "elapsed_time": "2:16:06", "remaining_time": "2:57:02"} +{"current_steps": 706, "total_steps": 1622, "loss": 1.5785, "learning_rate": 1.390874273816142e-05, "epoch": 0.43513097072419105, "percentage": 43.53, "elapsed_time": "2:16:17", "remaining_time": "2:56:50"} +{"current_steps": 707, "total_steps": 1622, "loss": 1.5074, "learning_rate": 1.3888914224234768e-05, "epoch": 0.4357473035439137, "percentage": 43.59, "elapsed_time": "2:16:28", "remaining_time": "2:56:38"} +{"current_steps": 708, "total_steps": 1622, "loss": 1.6059, "learning_rate": 1.3869067679410057e-05, "epoch": 0.43636363636363634, "percentage": 43.65, "elapsed_time": "2:16:40", "remaining_time": "2:56:26"} +{"current_steps": 709, "total_steps": 1622, "loss": 1.5151, "learning_rate": 1.384920319570552e-05, "epoch": 0.436979969183359, "percentage": 43.71, "elapsed_time": "2:16:51", "remaining_time": "2:56:14"} +{"current_steps": 710, "total_steps": 1622, "loss": 1.4896, "learning_rate": 1.3829320865222571e-05, "epoch": 0.43759630200308164, "percentage": 43.77, "elapsed_time": "2:17:02", "remaining_time": "2:56:02"} +{"current_steps": 711, "total_steps": 1622, "loss": 1.5014, "learning_rate": 1.3809420780145361e-05, "epoch": 0.4382126348228043, "percentage": 43.83, "elapsed_time": "2:17:13", "remaining_time": "2:55:50"} +{"current_steps": 712, "total_steps": 1622, "loss": 1.4992, "learning_rate": 1.3789503032740368e-05, "epoch": 0.438828967642527, "percentage": 43.9, "elapsed_time": "2:17:25", "remaining_time": "2:55:38"} +{"current_steps": 713, "total_steps": 1622, "loss": 1.5274, "learning_rate": 1.3769567715355954e-05, "epoch": 0.4394453004622496, "percentage": 43.96, "elapsed_time": "2:17:36", "remaining_time": "2:55:26"} +{"current_steps": 714, "total_steps": 1622, "loss": 1.5477, "learning_rate": 1.374961492042195e-05, "epoch": 0.4400616332819723, "percentage": 44.02, "elapsed_time": "2:17:47", "remaining_time": "2:55:14"} +{"current_steps": 715, "total_steps": 1622, "loss": 1.5571, "learning_rate": 1.3729644740449221e-05, "epoch": 0.4406779661016949, "percentage": 44.08, "elapsed_time": "2:17:58", "remaining_time": "2:55:02"} +{"current_steps": 716, "total_steps": 1622, "loss": 1.4966, "learning_rate": 1.3709657268029233e-05, "epoch": 0.4412942989214176, "percentage": 44.14, "elapsed_time": "2:18:10", "remaining_time": "2:54:50"} +{"current_steps": 717, "total_steps": 1622, "loss": 1.5397, "learning_rate": 1.3689652595833632e-05, "epoch": 0.4419106317411402, "percentage": 44.2, "elapsed_time": "2:18:21", "remaining_time": "2:54:38"} +{"current_steps": 718, "total_steps": 1622, "loss": 1.5164, "learning_rate": 1.3669630816613806e-05, "epoch": 0.4425269645608629, "percentage": 44.27, "elapsed_time": "2:18:32", "remaining_time": "2:54:25"} +{"current_steps": 719, "total_steps": 1622, "loss": 1.5299, "learning_rate": 1.3649592023200468e-05, "epoch": 0.4431432973805855, "percentage": 44.33, "elapsed_time": "2:18:43", "remaining_time": "2:54:13"} +{"current_steps": 720, "total_steps": 1622, "loss": 1.4985, "learning_rate": 1.362953630850321e-05, "epoch": 0.4437596302003082, "percentage": 44.39, "elapsed_time": "2:18:55", "remaining_time": "2:54:01"} +{"current_steps": 721, "total_steps": 1622, "loss": 1.5251, "learning_rate": 1.360946376551008e-05, "epoch": 0.4443759630200308, "percentage": 44.45, "elapsed_time": "2:19:06", "remaining_time": "2:53:49"} +{"current_steps": 722, "total_steps": 1622, "loss": 1.5015, "learning_rate": 1.358937448728715e-05, "epoch": 0.44499229583975347, "percentage": 44.51, "elapsed_time": "2:19:17", "remaining_time": "2:53:37"} +{"current_steps": 723, "total_steps": 1622, "loss": 1.5476, "learning_rate": 1.3569268566978093e-05, "epoch": 0.4456086286594761, "percentage": 44.57, "elapsed_time": "2:19:28", "remaining_time": "2:53:25"} +{"current_steps": 724, "total_steps": 1622, "loss": 1.4837, "learning_rate": 1.3549146097803728e-05, "epoch": 0.44622496147919877, "percentage": 44.64, "elapsed_time": "2:19:40", "remaining_time": "2:53:13"} +{"current_steps": 725, "total_steps": 1622, "loss": 1.5336, "learning_rate": 1.3529007173061612e-05, "epoch": 0.44684129429892144, "percentage": 44.7, "elapsed_time": "2:19:51", "remaining_time": "2:53:01"} +{"current_steps": 726, "total_steps": 1622, "loss": 1.5811, "learning_rate": 1.35088518861256e-05, "epoch": 0.44745762711864406, "percentage": 44.76, "elapsed_time": "2:20:02", "remaining_time": "2:52:50"} +{"current_steps": 727, "total_steps": 1622, "loss": 1.5298, "learning_rate": 1.34886803304454e-05, "epoch": 0.44807395993836674, "percentage": 44.82, "elapsed_time": "2:20:13", "remaining_time": "2:52:38"} +{"current_steps": 728, "total_steps": 1622, "loss": 1.5413, "learning_rate": 1.3468492599546168e-05, "epoch": 0.44869029275808936, "percentage": 44.88, "elapsed_time": "2:20:24", "remaining_time": "2:52:26"} +{"current_steps": 729, "total_steps": 1622, "loss": 1.5828, "learning_rate": 1.3448288787028032e-05, "epoch": 0.44930662557781204, "percentage": 44.94, "elapsed_time": "2:20:36", "remaining_time": "2:52:14"} +{"current_steps": 730, "total_steps": 1622, "loss": 1.5082, "learning_rate": 1.3428068986565701e-05, "epoch": 0.44992295839753466, "percentage": 45.01, "elapsed_time": "2:20:47", "remaining_time": "2:52:02"} +{"current_steps": 731, "total_steps": 1622, "loss": 1.5264, "learning_rate": 1.3407833291908005e-05, "epoch": 0.45053929121725733, "percentage": 45.07, "elapsed_time": "2:20:58", "remaining_time": "2:51:50"} +{"current_steps": 732, "total_steps": 1622, "loss": 1.6062, "learning_rate": 1.3387581796877469e-05, "epoch": 0.45115562403697995, "percentage": 45.13, "elapsed_time": "2:21:09", "remaining_time": "2:51:38"} +{"current_steps": 733, "total_steps": 1622, "loss": 1.4818, "learning_rate": 1.3367314595369872e-05, "epoch": 0.45177195685670263, "percentage": 45.19, "elapsed_time": "2:21:21", "remaining_time": "2:51:26"} +{"current_steps": 734, "total_steps": 1622, "loss": 1.558, "learning_rate": 1.334703178135382e-05, "epoch": 0.45238828967642525, "percentage": 45.25, "elapsed_time": "2:21:32", "remaining_time": "2:51:14"} +{"current_steps": 735, "total_steps": 1622, "loss": 1.5003, "learning_rate": 1.3326733448870304e-05, "epoch": 0.4530046224961479, "percentage": 45.31, "elapsed_time": "2:21:43", "remaining_time": "2:51:02"} +{"current_steps": 736, "total_steps": 1622, "loss": 1.4863, "learning_rate": 1.3306419692032273e-05, "epoch": 0.45362095531587054, "percentage": 45.38, "elapsed_time": "2:21:54", "remaining_time": "2:50:50"} +{"current_steps": 737, "total_steps": 1622, "loss": 1.5008, "learning_rate": 1.328609060502418e-05, "epoch": 0.4542372881355932, "percentage": 45.44, "elapsed_time": "2:22:06", "remaining_time": "2:50:38"} +{"current_steps": 738, "total_steps": 1622, "loss": 1.5321, "learning_rate": 1.326574628210156e-05, "epoch": 0.4548536209553159, "percentage": 45.5, "elapsed_time": "2:22:17", "remaining_time": "2:50:26"} +{"current_steps": 739, "total_steps": 1622, "loss": 1.4785, "learning_rate": 1.3245386817590594e-05, "epoch": 0.4554699537750385, "percentage": 45.56, "elapsed_time": "2:22:28", "remaining_time": "2:50:14"} +{"current_steps": 740, "total_steps": 1622, "loss": 1.4771, "learning_rate": 1.3225012305887659e-05, "epoch": 0.4560862865947612, "percentage": 45.62, "elapsed_time": "2:22:39", "remaining_time": "2:50:02"} +{"current_steps": 741, "total_steps": 1622, "loss": 1.5563, "learning_rate": 1.3204622841458907e-05, "epoch": 0.4567026194144838, "percentage": 45.68, "elapsed_time": "2:22:51", "remaining_time": "2:49:50"} +{"current_steps": 742, "total_steps": 1622, "loss": 1.4959, "learning_rate": 1.3184218518839812e-05, "epoch": 0.4573189522342065, "percentage": 45.75, "elapsed_time": "2:23:02", "remaining_time": "2:49:38"} +{"current_steps": 743, "total_steps": 1622, "loss": 1.5297, "learning_rate": 1.3163799432634736e-05, "epoch": 0.4579352850539291, "percentage": 45.81, "elapsed_time": "2:23:13", "remaining_time": "2:49:26"} +{"current_steps": 744, "total_steps": 1622, "loss": 1.5301, "learning_rate": 1.31433656775165e-05, "epoch": 0.4585516178736518, "percentage": 45.87, "elapsed_time": "2:23:25", "remaining_time": "2:49:14"} +{"current_steps": 745, "total_steps": 1622, "loss": 1.5439, "learning_rate": 1.3122917348225928e-05, "epoch": 0.4591679506933744, "percentage": 45.93, "elapsed_time": "2:23:36", "remaining_time": "2:49:02"} +{"current_steps": 746, "total_steps": 1622, "loss": 1.4977, "learning_rate": 1.3102454539571424e-05, "epoch": 0.4597842835130971, "percentage": 45.99, "elapsed_time": "2:23:47", "remaining_time": "2:48:51"} +{"current_steps": 747, "total_steps": 1622, "loss": 1.5819, "learning_rate": 1.3081977346428523e-05, "epoch": 0.4604006163328197, "percentage": 46.05, "elapsed_time": "2:23:58", "remaining_time": "2:48:39"} +{"current_steps": 748, "total_steps": 1622, "loss": 1.5291, "learning_rate": 1.306148586373945e-05, "epoch": 0.4610169491525424, "percentage": 46.12, "elapsed_time": "2:24:10", "remaining_time": "2:48:27"} +{"current_steps": 749, "total_steps": 1622, "loss": 1.4535, "learning_rate": 1.3040980186512689e-05, "epoch": 0.461633281972265, "percentage": 46.18, "elapsed_time": "2:24:21", "remaining_time": "2:48:15"} +{"current_steps": 750, "total_steps": 1622, "loss": 1.5487, "learning_rate": 1.3020460409822535e-05, "epoch": 0.4622496147919877, "percentage": 46.24, "elapsed_time": "2:24:32", "remaining_time": "2:48:03"} +{"current_steps": 751, "total_steps": 1622, "loss": 1.5674, "learning_rate": 1.2999926628808658e-05, "epoch": 0.46286594761171035, "percentage": 46.3, "elapsed_time": "2:24:57", "remaining_time": "2:48:07"} +{"current_steps": 752, "total_steps": 1622, "loss": 1.4928, "learning_rate": 1.2979378938675647e-05, "epoch": 0.46348228043143297, "percentage": 46.36, "elapsed_time": "2:25:08", "remaining_time": "2:47:55"} +{"current_steps": 753, "total_steps": 1622, "loss": 1.5171, "learning_rate": 1.2958817434692592e-05, "epoch": 0.46409861325115565, "percentage": 46.42, "elapsed_time": "2:25:20", "remaining_time": "2:47:43"} +{"current_steps": 754, "total_steps": 1622, "loss": 1.5726, "learning_rate": 1.2938242212192632e-05, "epoch": 0.46471494607087827, "percentage": 46.49, "elapsed_time": "2:25:31", "remaining_time": "2:47:31"} +{"current_steps": 755, "total_steps": 1622, "loss": 1.485, "learning_rate": 1.2917653366572498e-05, "epoch": 0.46533127889060094, "percentage": 46.55, "elapsed_time": "2:25:42", "remaining_time": "2:47:19"} +{"current_steps": 756, "total_steps": 1622, "loss": 1.5593, "learning_rate": 1.28970509932921e-05, "epoch": 0.46594761171032356, "percentage": 46.61, "elapsed_time": "2:25:53", "remaining_time": "2:47:07"} +{"current_steps": 757, "total_steps": 1622, "loss": 1.5307, "learning_rate": 1.287643518787406e-05, "epoch": 0.46656394453004624, "percentage": 46.67, "elapsed_time": "2:26:04", "remaining_time": "2:46:55"} +{"current_steps": 758, "total_steps": 1622, "loss": 1.495, "learning_rate": 1.2855806045903283e-05, "epoch": 0.46718027734976886, "percentage": 46.73, "elapsed_time": "2:26:17", "remaining_time": "2:46:45"} +{"current_steps": 759, "total_steps": 1622, "loss": 1.5279, "learning_rate": 1.2835163663026506e-05, "epoch": 0.46779661016949153, "percentage": 46.79, "elapsed_time": "2:26:28", "remaining_time": "2:46:33"} +{"current_steps": 760, "total_steps": 1622, "loss": 1.5506, "learning_rate": 1.2814508134951853e-05, "epoch": 0.46841294298921415, "percentage": 46.86, "elapsed_time": "2:26:40", "remaining_time": "2:46:21"} +{"current_steps": 761, "total_steps": 1622, "loss": 1.463, "learning_rate": 1.2793839557448403e-05, "epoch": 0.46902927580893683, "percentage": 46.92, "elapsed_time": "2:26:51", "remaining_time": "2:46:09"} +{"current_steps": 762, "total_steps": 1622, "loss": 1.518, "learning_rate": 1.2773158026345733e-05, "epoch": 0.46964560862865945, "percentage": 46.98, "elapsed_time": "2:27:02", "remaining_time": "2:45:57"} +{"current_steps": 763, "total_steps": 1622, "loss": 1.5552, "learning_rate": 1.275246363753348e-05, "epoch": 0.4702619414483821, "percentage": 47.04, "elapsed_time": "2:27:13", "remaining_time": "2:45:45"} +{"current_steps": 764, "total_steps": 1622, "loss": 1.4784, "learning_rate": 1.2731756486960907e-05, "epoch": 0.4708782742681048, "percentage": 47.1, "elapsed_time": "2:27:25", "remaining_time": "2:45:33"} +{"current_steps": 765, "total_steps": 1622, "loss": 1.4483, "learning_rate": 1.2711036670636426e-05, "epoch": 0.4714946070878274, "percentage": 47.16, "elapsed_time": "2:27:36", "remaining_time": "2:45:21"} +{"current_steps": 766, "total_steps": 1622, "loss": 1.4819, "learning_rate": 1.2690304284627186e-05, "epoch": 0.4721109399075501, "percentage": 47.23, "elapsed_time": "2:27:47", "remaining_time": "2:45:09"} +{"current_steps": 767, "total_steps": 1622, "loss": 1.4628, "learning_rate": 1.2669559425058622e-05, "epoch": 0.4727272727272727, "percentage": 47.29, "elapsed_time": "2:27:59", "remaining_time": "2:44:57"} +{"current_steps": 768, "total_steps": 1622, "loss": 1.4798, "learning_rate": 1.2648802188113982e-05, "epoch": 0.4733436055469954, "percentage": 47.35, "elapsed_time": "2:28:10", "remaining_time": "2:44:45"} +{"current_steps": 769, "total_steps": 1622, "loss": 1.4731, "learning_rate": 1.2628032670033921e-05, "epoch": 0.473959938366718, "percentage": 47.41, "elapsed_time": "2:28:21", "remaining_time": "2:44:33"} +{"current_steps": 770, "total_steps": 1622, "loss": 1.5501, "learning_rate": 1.260725096711603e-05, "epoch": 0.4745762711864407, "percentage": 47.47, "elapsed_time": "2:28:32", "remaining_time": "2:44:22"} +{"current_steps": 771, "total_steps": 1622, "loss": 1.5237, "learning_rate": 1.2586457175714382e-05, "epoch": 0.4751926040061633, "percentage": 47.53, "elapsed_time": "2:28:44", "remaining_time": "2:44:10"} +{"current_steps": 772, "total_steps": 1622, "loss": 1.4684, "learning_rate": 1.256565139223912e-05, "epoch": 0.475808936825886, "percentage": 47.6, "elapsed_time": "2:28:55", "remaining_time": "2:43:58"} +{"current_steps": 773, "total_steps": 1622, "loss": 1.5732, "learning_rate": 1.2544833713155976e-05, "epoch": 0.4764252696456086, "percentage": 47.66, "elapsed_time": "2:29:07", "remaining_time": "2:43:46"} +{"current_steps": 774, "total_steps": 1622, "loss": 1.5267, "learning_rate": 1.2524004234985825e-05, "epoch": 0.4770416024653313, "percentage": 47.72, "elapsed_time": "2:29:18", "remaining_time": "2:43:34"} +{"current_steps": 775, "total_steps": 1622, "loss": 1.4584, "learning_rate": 1.2503163054304275e-05, "epoch": 0.4776579352850539, "percentage": 47.78, "elapsed_time": "2:29:29", "remaining_time": "2:43:22"} +{"current_steps": 776, "total_steps": 1622, "loss": 1.5026, "learning_rate": 1.2482310267741168e-05, "epoch": 0.4782742681047766, "percentage": 47.84, "elapsed_time": "2:29:40", "remaining_time": "2:43:10"} +{"current_steps": 777, "total_steps": 1622, "loss": 1.5371, "learning_rate": 1.246144597198017e-05, "epoch": 0.47889060092449925, "percentage": 47.9, "elapsed_time": "2:29:52", "remaining_time": "2:42:59"} +{"current_steps": 778, "total_steps": 1622, "loss": 1.4678, "learning_rate": 1.2440570263758306e-05, "epoch": 0.4795069337442219, "percentage": 47.97, "elapsed_time": "2:30:03", "remaining_time": "2:42:47"} +{"current_steps": 779, "total_steps": 1622, "loss": 1.5206, "learning_rate": 1.2419683239865515e-05, "epoch": 0.48012326656394455, "percentage": 48.03, "elapsed_time": "2:30:14", "remaining_time": "2:42:35"} +{"current_steps": 780, "total_steps": 1622, "loss": 1.4982, "learning_rate": 1.2398784997144192e-05, "epoch": 0.48073959938366717, "percentage": 48.09, "elapsed_time": "2:30:25", "remaining_time": "2:42:23"} +{"current_steps": 781, "total_steps": 1622, "loss": 1.6151, "learning_rate": 1.2377875632488765e-05, "epoch": 0.48135593220338985, "percentage": 48.15, "elapsed_time": "2:30:37", "remaining_time": "2:42:11"} +{"current_steps": 782, "total_steps": 1622, "loss": 1.4933, "learning_rate": 1.2356955242845214e-05, "epoch": 0.48197226502311247, "percentage": 48.21, "elapsed_time": "2:30:48", "remaining_time": "2:41:59"} +{"current_steps": 783, "total_steps": 1622, "loss": 1.4995, "learning_rate": 1.2336023925210647e-05, "epoch": 0.48258859784283514, "percentage": 48.27, "elapsed_time": "2:30:59", "remaining_time": "2:41:47"} +{"current_steps": 784, "total_steps": 1622, "loss": 1.548, "learning_rate": 1.2315081776632828e-05, "epoch": 0.48320493066255776, "percentage": 48.34, "elapsed_time": "2:31:11", "remaining_time": "2:41:35"} +{"current_steps": 785, "total_steps": 1622, "loss": 1.5197, "learning_rate": 1.2294128894209751e-05, "epoch": 0.48382126348228044, "percentage": 48.4, "elapsed_time": "2:31:22", "remaining_time": "2:41:23"} +{"current_steps": 786, "total_steps": 1622, "loss": 1.5403, "learning_rate": 1.227316537508917e-05, "epoch": 0.48443759630200306, "percentage": 48.46, "elapsed_time": "2:31:33", "remaining_time": "2:41:11"} +{"current_steps": 787, "total_steps": 1622, "loss": 1.4943, "learning_rate": 1.2252191316468151e-05, "epoch": 0.48505392912172574, "percentage": 48.52, "elapsed_time": "2:31:44", "remaining_time": "2:41:00"} +{"current_steps": 788, "total_steps": 1622, "loss": 1.4466, "learning_rate": 1.223120681559264e-05, "epoch": 0.48567026194144836, "percentage": 48.58, "elapsed_time": "2:31:55", "remaining_time": "2:40:48"} +{"current_steps": 789, "total_steps": 1622, "loss": 1.5392, "learning_rate": 1.2210211969756987e-05, "epoch": 0.48628659476117103, "percentage": 48.64, "elapsed_time": "2:32:07", "remaining_time": "2:40:36"} +{"current_steps": 790, "total_steps": 1622, "loss": 1.5022, "learning_rate": 1.2189206876303512e-05, "epoch": 0.4869029275808937, "percentage": 48.71, "elapsed_time": "2:32:18", "remaining_time": "2:40:24"} +{"current_steps": 791, "total_steps": 1622, "loss": 1.5099, "learning_rate": 1.2168191632622044e-05, "epoch": 0.4875192604006163, "percentage": 48.77, "elapsed_time": "2:32:29", "remaining_time": "2:40:12"} +{"current_steps": 792, "total_steps": 1622, "loss": 1.4375, "learning_rate": 1.2147166336149474e-05, "epoch": 0.488135593220339, "percentage": 48.83, "elapsed_time": "2:32:40", "remaining_time": "2:40:00"} +{"current_steps": 793, "total_steps": 1622, "loss": 1.4809, "learning_rate": 1.2126131084369308e-05, "epoch": 0.4887519260400616, "percentage": 48.89, "elapsed_time": "2:32:52", "remaining_time": "2:39:48"} +{"current_steps": 794, "total_steps": 1622, "loss": 1.5226, "learning_rate": 1.2105085974811204e-05, "epoch": 0.4893682588597843, "percentage": 48.95, "elapsed_time": "2:33:03", "remaining_time": "2:39:36"} +{"current_steps": 795, "total_steps": 1622, "loss": 1.5189, "learning_rate": 1.2084031105050525e-05, "epoch": 0.4899845916795069, "percentage": 49.01, "elapsed_time": "2:33:14", "remaining_time": "2:39:24"} +{"current_steps": 796, "total_steps": 1622, "loss": 1.5454, "learning_rate": 1.206296657270789e-05, "epoch": 0.4906009244992296, "percentage": 49.08, "elapsed_time": "2:33:25", "remaining_time": "2:39:12"} +{"current_steps": 797, "total_steps": 1622, "loss": 1.4886, "learning_rate": 1.204189247544872e-05, "epoch": 0.4912172573189522, "percentage": 49.14, "elapsed_time": "2:33:37", "remaining_time": "2:39:00"} +{"current_steps": 798, "total_steps": 1622, "loss": 1.4983, "learning_rate": 1.202080891098278e-05, "epoch": 0.4918335901386749, "percentage": 49.2, "elapsed_time": "2:33:48", "remaining_time": "2:38:49"} +{"current_steps": 799, "total_steps": 1622, "loss": 1.5808, "learning_rate": 1.1999715977063729e-05, "epoch": 0.4924499229583975, "percentage": 49.26, "elapsed_time": "2:33:59", "remaining_time": "2:38:37"} +{"current_steps": 800, "total_steps": 1622, "loss": 1.5756, "learning_rate": 1.1978613771488667e-05, "epoch": 0.4930662557781202, "percentage": 49.32, "elapsed_time": "2:34:10", "remaining_time": "2:38:25"} +{"current_steps": 801, "total_steps": 1622, "loss": 1.5848, "learning_rate": 1.1957502392097693e-05, "epoch": 0.4936825885978428, "percentage": 49.38, "elapsed_time": "2:34:36", "remaining_time": "2:38:27"} +{"current_steps": 802, "total_steps": 1622, "loss": 1.5164, "learning_rate": 1.1936381936773418e-05, "epoch": 0.4942989214175655, "percentage": 49.45, "elapsed_time": "2:34:47", "remaining_time": "2:38:16"} +{"current_steps": 803, "total_steps": 1622, "loss": 1.509, "learning_rate": 1.1915252503440562e-05, "epoch": 0.49491525423728816, "percentage": 49.51, "elapsed_time": "2:34:58", "remaining_time": "2:38:04"} +{"current_steps": 804, "total_steps": 1622, "loss": 1.4744, "learning_rate": 1.1894114190065442e-05, "epoch": 0.4955315870570108, "percentage": 49.57, "elapsed_time": "2:35:10", "remaining_time": "2:37:52"} +{"current_steps": 805, "total_steps": 1622, "loss": 1.5635, "learning_rate": 1.187296709465557e-05, "epoch": 0.49614791987673346, "percentage": 49.63, "elapsed_time": "2:35:21", "remaining_time": "2:37:40"} +{"current_steps": 806, "total_steps": 1622, "loss": 1.5135, "learning_rate": 1.1851811315259165e-05, "epoch": 0.4967642526964561, "percentage": 49.69, "elapsed_time": "2:35:33", "remaining_time": "2:37:28"} +{"current_steps": 807, "total_steps": 1622, "loss": 1.5179, "learning_rate": 1.1830646949964709e-05, "epoch": 0.49738058551617875, "percentage": 49.75, "elapsed_time": "2:35:44", "remaining_time": "2:37:17"} +{"current_steps": 808, "total_steps": 1622, "loss": 1.5213, "learning_rate": 1.1809474096900498e-05, "epoch": 0.4979969183359014, "percentage": 49.82, "elapsed_time": "2:35:55", "remaining_time": "2:37:05"} +{"current_steps": 809, "total_steps": 1622, "loss": 1.4103, "learning_rate": 1.1788292854234177e-05, "epoch": 0.49861325115562405, "percentage": 49.88, "elapsed_time": "2:36:07", "remaining_time": "2:36:53"} +{"current_steps": 810, "total_steps": 1622, "loss": 1.6103, "learning_rate": 1.1767103320172285e-05, "epoch": 0.49922958397534667, "percentage": 49.94, "elapsed_time": "2:36:19", "remaining_time": "2:36:43"} +{"current_steps": 811, "total_steps": 1622, "loss": 1.5083, "learning_rate": 1.1745905592959822e-05, "epoch": 0.49984591679506934, "percentage": 50.0, "elapsed_time": "2:36:31", "remaining_time": "2:36:31"} +{"current_steps": 812, "total_steps": 1622, "loss": 1.4523, "learning_rate": 1.1724699770879749e-05, "epoch": 0.500462249614792, "percentage": 50.06, "elapsed_time": "2:36:42", "remaining_time": "2:36:19"} +{"current_steps": 813, "total_steps": 1622, "loss": 1.5229, "learning_rate": 1.1703485952252577e-05, "epoch": 0.5010785824345146, "percentage": 50.12, "elapsed_time": "2:36:53", "remaining_time": "2:36:07"} +{"current_steps": 814, "total_steps": 1622, "loss": 1.4856, "learning_rate": 1.1682264235435896e-05, "epoch": 0.5016949152542373, "percentage": 50.18, "elapsed_time": "2:37:04", "remaining_time": "2:35:55"} +{"current_steps": 815, "total_steps": 1622, "loss": 1.4336, "learning_rate": 1.1661034718823898e-05, "epoch": 0.50231124807396, "percentage": 50.25, "elapsed_time": "2:37:16", "remaining_time": "2:35:43"} +{"current_steps": 816, "total_steps": 1622, "loss": 1.4875, "learning_rate": 1.1639797500846951e-05, "epoch": 0.5029275808936826, "percentage": 50.31, "elapsed_time": "2:37:27", "remaining_time": "2:35:31"} +{"current_steps": 817, "total_steps": 1622, "loss": 1.5739, "learning_rate": 1.1618552679971136e-05, "epoch": 0.5035439137134052, "percentage": 50.37, "elapsed_time": "2:37:38", "remaining_time": "2:35:19"} +{"current_steps": 818, "total_steps": 1622, "loss": 1.5269, "learning_rate": 1.1597300354697766e-05, "epoch": 0.5041602465331279, "percentage": 50.43, "elapsed_time": "2:37:49", "remaining_time": "2:35:07"} +{"current_steps": 819, "total_steps": 1622, "loss": 1.5446, "learning_rate": 1.1576040623562965e-05, "epoch": 0.5047765793528506, "percentage": 50.49, "elapsed_time": "2:38:01", "remaining_time": "2:34:55"} +{"current_steps": 820, "total_steps": 1622, "loss": 1.4736, "learning_rate": 1.1554773585137186e-05, "epoch": 0.5053929121725732, "percentage": 50.55, "elapsed_time": "2:38:12", "remaining_time": "2:34:43"} +{"current_steps": 821, "total_steps": 1622, "loss": 1.5275, "learning_rate": 1.1533499338024765e-05, "epoch": 0.5060092449922958, "percentage": 50.62, "elapsed_time": "2:38:23", "remaining_time": "2:34:32"} +{"current_steps": 822, "total_steps": 1622, "loss": 1.4999, "learning_rate": 1.1512217980863463e-05, "epoch": 0.5066255778120184, "percentage": 50.68, "elapsed_time": "2:38:34", "remaining_time": "2:34:20"} +{"current_steps": 823, "total_steps": 1622, "loss": 1.509, "learning_rate": 1.1490929612323998e-05, "epoch": 0.5072419106317412, "percentage": 50.74, "elapsed_time": "2:38:46", "remaining_time": "2:34:08"} +{"current_steps": 824, "total_steps": 1622, "loss": 1.5244, "learning_rate": 1.1469634331109606e-05, "epoch": 0.5078582434514638, "percentage": 50.8, "elapsed_time": "2:38:57", "remaining_time": "2:33:56"} +{"current_steps": 825, "total_steps": 1622, "loss": 1.5602, "learning_rate": 1.144833223595557e-05, "epoch": 0.5084745762711864, "percentage": 50.86, "elapsed_time": "2:39:08", "remaining_time": "2:33:44"} +{"current_steps": 826, "total_steps": 1622, "loss": 1.5393, "learning_rate": 1.1427023425628762e-05, "epoch": 0.509090909090909, "percentage": 50.92, "elapsed_time": "2:39:19", "remaining_time": "2:33:32"} +{"current_steps": 827, "total_steps": 1622, "loss": 1.5072, "learning_rate": 1.1405707998927196e-05, "epoch": 0.5097072419106318, "percentage": 50.99, "elapsed_time": "2:39:31", "remaining_time": "2:33:20"} +{"current_steps": 828, "total_steps": 1622, "loss": 1.4829, "learning_rate": 1.1384386054679557e-05, "epoch": 0.5103235747303544, "percentage": 51.05, "elapsed_time": "2:39:42", "remaining_time": "2:33:08"} +{"current_steps": 829, "total_steps": 1622, "loss": 1.5279, "learning_rate": 1.1363057691744747e-05, "epoch": 0.510939907550077, "percentage": 51.11, "elapsed_time": "2:39:53", "remaining_time": "2:32:56"} +{"current_steps": 830, "total_steps": 1622, "loss": 1.5849, "learning_rate": 1.1341723009011441e-05, "epoch": 0.5115562403697997, "percentage": 51.17, "elapsed_time": "2:40:04", "remaining_time": "2:32:45"} +{"current_steps": 831, "total_steps": 1622, "loss": 1.5164, "learning_rate": 1.1320382105397594e-05, "epoch": 0.5121725731895224, "percentage": 51.23, "elapsed_time": "2:40:16", "remaining_time": "2:32:33"} +{"current_steps": 832, "total_steps": 1622, "loss": 1.4717, "learning_rate": 1.1299035079850022e-05, "epoch": 0.512788906009245, "percentage": 51.29, "elapsed_time": "2:40:27", "remaining_time": "2:32:21"} +{"current_steps": 833, "total_steps": 1622, "loss": 1.4692, "learning_rate": 1.1277682031343922e-05, "epoch": 0.5134052388289676, "percentage": 51.36, "elapsed_time": "2:40:38", "remaining_time": "2:32:09"} +{"current_steps": 834, "total_steps": 1622, "loss": 1.4552, "learning_rate": 1.1256323058882414e-05, "epoch": 0.5140215716486903, "percentage": 51.42, "elapsed_time": "2:40:49", "remaining_time": "2:31:57"} +{"current_steps": 835, "total_steps": 1622, "loss": 1.5206, "learning_rate": 1.1234958261496078e-05, "epoch": 0.514637904468413, "percentage": 51.48, "elapsed_time": "2:41:01", "remaining_time": "2:31:45"} +{"current_steps": 836, "total_steps": 1622, "loss": 1.5273, "learning_rate": 1.121358773824251e-05, "epoch": 0.5152542372881356, "percentage": 51.54, "elapsed_time": "2:41:12", "remaining_time": "2:31:33"} +{"current_steps": 837, "total_steps": 1622, "loss": 1.5256, "learning_rate": 1.1192211588205855e-05, "epoch": 0.5158705701078582, "percentage": 51.6, "elapsed_time": "2:41:23", "remaining_time": "2:31:22"} +{"current_steps": 838, "total_steps": 1622, "loss": 1.5777, "learning_rate": 1.117082991049634e-05, "epoch": 0.5164869029275809, "percentage": 51.66, "elapsed_time": "2:41:34", "remaining_time": "2:31:10"} +{"current_steps": 839, "total_steps": 1622, "loss": 1.5345, "learning_rate": 1.114944280424982e-05, "epoch": 0.5171032357473035, "percentage": 51.73, "elapsed_time": "2:41:46", "remaining_time": "2:30:58"} +{"current_steps": 840, "total_steps": 1622, "loss": 1.466, "learning_rate": 1.1128050368627328e-05, "epoch": 0.5177195685670262, "percentage": 51.79, "elapsed_time": "2:41:57", "remaining_time": "2:30:46"} +{"current_steps": 841, "total_steps": 1622, "loss": 1.5691, "learning_rate": 1.11066527028146e-05, "epoch": 0.5183359013867489, "percentage": 51.85, "elapsed_time": "2:42:08", "remaining_time": "2:30:34"} +{"current_steps": 842, "total_steps": 1622, "loss": 1.5238, "learning_rate": 1.1085249906021625e-05, "epoch": 0.5189522342064715, "percentage": 51.91, "elapsed_time": "2:42:20", "remaining_time": "2:30:23"} +{"current_steps": 843, "total_steps": 1622, "loss": 1.5001, "learning_rate": 1.1063842077482178e-05, "epoch": 0.5195685670261941, "percentage": 51.97, "elapsed_time": "2:42:31", "remaining_time": "2:30:11"} +{"current_steps": 844, "total_steps": 1622, "loss": 1.4691, "learning_rate": 1.1042429316453366e-05, "epoch": 0.5201848998459168, "percentage": 52.03, "elapsed_time": "2:42:42", "remaining_time": "2:29:59"} +{"current_steps": 845, "total_steps": 1622, "loss": 1.5263, "learning_rate": 1.1021011722215167e-05, "epoch": 0.5208012326656395, "percentage": 52.1, "elapsed_time": "2:42:53", "remaining_time": "2:29:47"} +{"current_steps": 846, "total_steps": 1622, "loss": 1.5281, "learning_rate": 1.099958939406996e-05, "epoch": 0.5214175654853621, "percentage": 52.16, "elapsed_time": "2:43:05", "remaining_time": "2:29:35"} +{"current_steps": 847, "total_steps": 1622, "loss": 1.5568, "learning_rate": 1.097816243134209e-05, "epoch": 0.5220338983050847, "percentage": 52.22, "elapsed_time": "2:43:16", "remaining_time": "2:29:23"} +{"current_steps": 848, "total_steps": 1622, "loss": 1.4949, "learning_rate": 1.0956730933377373e-05, "epoch": 0.5226502311248074, "percentage": 52.28, "elapsed_time": "2:43:27", "remaining_time": "2:29:11"} +{"current_steps": 849, "total_steps": 1622, "loss": 1.4645, "learning_rate": 1.0935294999542651e-05, "epoch": 0.5232665639445301, "percentage": 52.34, "elapsed_time": "2:43:38", "remaining_time": "2:28:59"} +{"current_steps": 850, "total_steps": 1622, "loss": 1.5021, "learning_rate": 1.0913854729225355e-05, "epoch": 0.5238828967642527, "percentage": 52.4, "elapsed_time": "2:43:50", "remaining_time": "2:28:48"} +{"current_steps": 851, "total_steps": 1622, "loss": 1.4911, "learning_rate": 1.0892410221832996e-05, "epoch": 0.5244992295839753, "percentage": 52.47, "elapsed_time": "2:44:15", "remaining_time": "2:28:49"} +{"current_steps": 852, "total_steps": 1622, "loss": 1.5192, "learning_rate": 1.0870961576792748e-05, "epoch": 0.5251155624036979, "percentage": 52.53, "elapsed_time": "2:44:26", "remaining_time": "2:28:37"} +{"current_steps": 853, "total_steps": 1622, "loss": 1.5065, "learning_rate": 1.0849508893550962e-05, "epoch": 0.5257318952234207, "percentage": 52.59, "elapsed_time": "2:44:38", "remaining_time": "2:28:25"} +{"current_steps": 854, "total_steps": 1622, "loss": 1.5083, "learning_rate": 1.082805227157271e-05, "epoch": 0.5263482280431433, "percentage": 52.65, "elapsed_time": "2:44:49", "remaining_time": "2:28:13"} +{"current_steps": 855, "total_steps": 1622, "loss": 1.4197, "learning_rate": 1.0806591810341331e-05, "epoch": 0.5269645608628659, "percentage": 52.71, "elapsed_time": "2:45:00", "remaining_time": "2:28:01"} +{"current_steps": 856, "total_steps": 1622, "loss": 1.4405, "learning_rate": 1.0785127609357965e-05, "epoch": 0.5275808936825886, "percentage": 52.77, "elapsed_time": "2:45:11", "remaining_time": "2:27:49"} +{"current_steps": 857, "total_steps": 1622, "loss": 1.4992, "learning_rate": 1.076365976814108e-05, "epoch": 0.5281972265023113, "percentage": 52.84, "elapsed_time": "2:45:23", "remaining_time": "2:27:37"} +{"current_steps": 858, "total_steps": 1622, "loss": 1.5539, "learning_rate": 1.0742188386226044e-05, "epoch": 0.5288135593220339, "percentage": 52.9, "elapsed_time": "2:45:34", "remaining_time": "2:27:26"} +{"current_steps": 859, "total_steps": 1622, "loss": 1.46, "learning_rate": 1.0720713563164615e-05, "epoch": 0.5294298921417565, "percentage": 52.96, "elapsed_time": "2:45:45", "remaining_time": "2:27:14"} +{"current_steps": 860, "total_steps": 1622, "loss": 1.5443, "learning_rate": 1.0699235398524528e-05, "epoch": 0.5300462249614792, "percentage": 53.02, "elapsed_time": "2:45:56", "remaining_time": "2:27:02"} +{"current_steps": 861, "total_steps": 1622, "loss": 1.4772, "learning_rate": 1.0677753991889e-05, "epoch": 0.5306625577812019, "percentage": 53.08, "elapsed_time": "2:46:08", "remaining_time": "2:26:50"} +{"current_steps": 862, "total_steps": 1622, "loss": 1.5105, "learning_rate": 1.0656269442856276e-05, "epoch": 0.5312788906009245, "percentage": 53.14, "elapsed_time": "2:46:19", "remaining_time": "2:26:38"} +{"current_steps": 863, "total_steps": 1622, "loss": 1.479, "learning_rate": 1.063478185103918e-05, "epoch": 0.5318952234206471, "percentage": 53.21, "elapsed_time": "2:46:30", "remaining_time": "2:26:26"} +{"current_steps": 864, "total_steps": 1622, "loss": 1.4962, "learning_rate": 1.0613291316064643e-05, "epoch": 0.5325115562403698, "percentage": 53.27, "elapsed_time": "2:46:42", "remaining_time": "2:26:15"} +{"current_steps": 865, "total_steps": 1622, "loss": 1.4741, "learning_rate": 1.0591797937573233e-05, "epoch": 0.5331278890600925, "percentage": 53.33, "elapsed_time": "2:46:53", "remaining_time": "2:26:03"} +{"current_steps": 866, "total_steps": 1622, "loss": 1.5051, "learning_rate": 1.0570301815218717e-05, "epoch": 0.5337442218798151, "percentage": 53.39, "elapsed_time": "2:47:04", "remaining_time": "2:25:51"} +{"current_steps": 867, "total_steps": 1622, "loss": 1.4949, "learning_rate": 1.0548803048667567e-05, "epoch": 0.5343605546995378, "percentage": 53.45, "elapsed_time": "2:47:15", "remaining_time": "2:25:39"} +{"current_steps": 868, "total_steps": 1622, "loss": 1.4803, "learning_rate": 1.0527301737598523e-05, "epoch": 0.5349768875192604, "percentage": 53.51, "elapsed_time": "2:47:27", "remaining_time": "2:25:27"} +{"current_steps": 869, "total_steps": 1622, "loss": 1.5428, "learning_rate": 1.0505797981702126e-05, "epoch": 0.535593220338983, "percentage": 53.58, "elapsed_time": "2:47:38", "remaining_time": "2:25:15"} +{"current_steps": 870, "total_steps": 1622, "loss": 1.5053, "learning_rate": 1.0484291880680244e-05, "epoch": 0.5362095531587057, "percentage": 53.64, "elapsed_time": "2:47:49", "remaining_time": "2:25:03"} +{"current_steps": 871, "total_steps": 1622, "loss": 1.5225, "learning_rate": 1.0462783534245626e-05, "epoch": 0.5368258859784284, "percentage": 53.7, "elapsed_time": "2:48:00", "remaining_time": "2:24:51"} +{"current_steps": 872, "total_steps": 1622, "loss": 1.5327, "learning_rate": 1.0441273042121428e-05, "epoch": 0.537442218798151, "percentage": 53.76, "elapsed_time": "2:48:12", "remaining_time": "2:24:40"} +{"current_steps": 873, "total_steps": 1622, "loss": 1.5009, "learning_rate": 1.0419760504040754e-05, "epoch": 0.5380585516178736, "percentage": 53.82, "elapsed_time": "2:48:23", "remaining_time": "2:24:28"} +{"current_steps": 874, "total_steps": 1622, "loss": 1.5185, "learning_rate": 1.0398246019746197e-05, "epoch": 0.5386748844375963, "percentage": 53.88, "elapsed_time": "2:48:34", "remaining_time": "2:24:16"} +{"current_steps": 875, "total_steps": 1622, "loss": 1.5377, "learning_rate": 1.0376729688989369e-05, "epoch": 0.539291217257319, "percentage": 53.95, "elapsed_time": "2:48:45", "remaining_time": "2:24:04"} +{"current_steps": 876, "total_steps": 1622, "loss": 1.4867, "learning_rate": 1.0355211611530444e-05, "epoch": 0.5399075500770416, "percentage": 54.01, "elapsed_time": "2:48:57", "remaining_time": "2:23:52"} +{"current_steps": 877, "total_steps": 1622, "loss": 1.5054, "learning_rate": 1.0333691887137705e-05, "epoch": 0.5405238828967642, "percentage": 54.07, "elapsed_time": "2:49:08", "remaining_time": "2:23:40"} +{"current_steps": 878, "total_steps": 1622, "loss": 1.488, "learning_rate": 1.0312170615587056e-05, "epoch": 0.5411402157164868, "percentage": 54.13, "elapsed_time": "2:49:19", "remaining_time": "2:23:29"} +{"current_steps": 879, "total_steps": 1622, "loss": 1.4638, "learning_rate": 1.0290647896661578e-05, "epoch": 0.5417565485362096, "percentage": 54.19, "elapsed_time": "2:49:30", "remaining_time": "2:23:17"} +{"current_steps": 880, "total_steps": 1622, "loss": 1.5271, "learning_rate": 1.0269123830151072e-05, "epoch": 0.5423728813559322, "percentage": 54.25, "elapsed_time": "2:49:42", "remaining_time": "2:23:05"} +{"current_steps": 881, "total_steps": 1622, "loss": 1.4356, "learning_rate": 1.0247598515851577e-05, "epoch": 0.5429892141756548, "percentage": 54.32, "elapsed_time": "2:49:53", "remaining_time": "2:22:53"} +{"current_steps": 882, "total_steps": 1622, "loss": 1.4827, "learning_rate": 1.0226072053564922e-05, "epoch": 0.5436055469953776, "percentage": 54.38, "elapsed_time": "2:50:04", "remaining_time": "2:22:41"} +{"current_steps": 883, "total_steps": 1622, "loss": 1.508, "learning_rate": 1.0204544543098253e-05, "epoch": 0.5442218798151002, "percentage": 54.44, "elapsed_time": "2:50:15", "remaining_time": "2:22:29"} +{"current_steps": 884, "total_steps": 1622, "loss": 1.5599, "learning_rate": 1.0183016084263589e-05, "epoch": 0.5448382126348228, "percentage": 54.5, "elapsed_time": "2:50:26", "remaining_time": "2:22:17"} +{"current_steps": 885, "total_steps": 1622, "loss": 1.4621, "learning_rate": 1.0161486776877326e-05, "epoch": 0.5454545454545454, "percentage": 54.56, "elapsed_time": "2:50:38", "remaining_time": "2:22:06"} +{"current_steps": 886, "total_steps": 1622, "loss": 1.4712, "learning_rate": 1.0139956720759816e-05, "epoch": 0.5460708782742681, "percentage": 54.62, "elapsed_time": "2:50:49", "remaining_time": "2:21:54"} +{"current_steps": 887, "total_steps": 1622, "loss": 1.5191, "learning_rate": 1.0118426015734868e-05, "epoch": 0.5466872110939908, "percentage": 54.69, "elapsed_time": "2:51:01", "remaining_time": "2:21:42"} +{"current_steps": 888, "total_steps": 1622, "loss": 1.5135, "learning_rate": 1.0096894761629304e-05, "epoch": 0.5473035439137134, "percentage": 54.75, "elapsed_time": "2:51:12", "remaining_time": "2:21:30"} +{"current_steps": 889, "total_steps": 1622, "loss": 1.4854, "learning_rate": 1.0075363058272491e-05, "epoch": 0.547919876733436, "percentage": 54.81, "elapsed_time": "2:51:23", "remaining_time": "2:21:18"} +{"current_steps": 890, "total_steps": 1622, "loss": 1.4913, "learning_rate": 1.0053831005495882e-05, "epoch": 0.5485362095531587, "percentage": 54.87, "elapsed_time": "2:51:34", "remaining_time": "2:21:07"} +{"current_steps": 891, "total_steps": 1622, "loss": 1.5221, "learning_rate": 1.0032298703132544e-05, "epoch": 0.5491525423728814, "percentage": 54.93, "elapsed_time": "2:51:45", "remaining_time": "2:20:55"} +{"current_steps": 892, "total_steps": 1622, "loss": 1.4649, "learning_rate": 1.001076625101671e-05, "epoch": 0.549768875192604, "percentage": 54.99, "elapsed_time": "2:51:57", "remaining_time": "2:20:43"} +{"current_steps": 893, "total_steps": 1622, "loss": 1.4676, "learning_rate": 9.989233748983294e-06, "epoch": 0.5503852080123267, "percentage": 55.06, "elapsed_time": "2:52:08", "remaining_time": "2:20:31"} +{"current_steps": 894, "total_steps": 1622, "loss": 1.4992, "learning_rate": 9.967701296867457e-06, "epoch": 0.5510015408320493, "percentage": 55.12, "elapsed_time": "2:52:19", "remaining_time": "2:20:19"} +{"current_steps": 895, "total_steps": 1622, "loss": 1.5364, "learning_rate": 9.946168994504122e-06, "epoch": 0.551617873651772, "percentage": 55.18, "elapsed_time": "2:52:31", "remaining_time": "2:20:08"} +{"current_steps": 896, "total_steps": 1622, "loss": 1.512, "learning_rate": 9.92463694172751e-06, "epoch": 0.5522342064714946, "percentage": 55.24, "elapsed_time": "2:52:42", "remaining_time": "2:19:56"} +{"current_steps": 897, "total_steps": 1622, "loss": 1.5188, "learning_rate": 9.903105238370698e-06, "epoch": 0.5528505392912173, "percentage": 55.3, "elapsed_time": "2:52:53", "remaining_time": "2:19:44"} +{"current_steps": 898, "total_steps": 1622, "loss": 1.5547, "learning_rate": 9.881573984265136e-06, "epoch": 0.5534668721109399, "percentage": 55.36, "elapsed_time": "2:53:04", "remaining_time": "2:19:32"} +{"current_steps": 899, "total_steps": 1622, "loss": 1.5145, "learning_rate": 9.860043279240186e-06, "epoch": 0.5540832049306625, "percentage": 55.43, "elapsed_time": "2:53:16", "remaining_time": "2:19:20"} +{"current_steps": 900, "total_steps": 1622, "loss": 1.4758, "learning_rate": 9.838513223122676e-06, "epoch": 0.5546995377503852, "percentage": 55.49, "elapsed_time": "2:53:27", "remaining_time": "2:19:08"} +{"current_steps": 901, "total_steps": 1622, "loss": 1.5101, "learning_rate": 9.816983915736418e-06, "epoch": 0.5553158705701079, "percentage": 55.55, "elapsed_time": "2:53:53", "remaining_time": "2:19:08"} +{"current_steps": 902, "total_steps": 1622, "loss": 1.4971, "learning_rate": 9.79545545690175e-06, "epoch": 0.5559322033898305, "percentage": 55.61, "elapsed_time": "2:54:04", "remaining_time": "2:18:57"} +{"current_steps": 903, "total_steps": 1622, "loss": 1.5557, "learning_rate": 9.773927946435083e-06, "epoch": 0.5565485362095531, "percentage": 55.67, "elapsed_time": "2:54:15", "remaining_time": "2:18:45"} +{"current_steps": 904, "total_steps": 1622, "loss": 1.5035, "learning_rate": 9.752401484148426e-06, "epoch": 0.5571648690292758, "percentage": 55.73, "elapsed_time": "2:54:26", "remaining_time": "2:18:33"} +{"current_steps": 905, "total_steps": 1622, "loss": 1.5366, "learning_rate": 9.730876169848932e-06, "epoch": 0.5577812018489985, "percentage": 55.8, "elapsed_time": "2:54:38", "remaining_time": "2:18:21"} +{"current_steps": 906, "total_steps": 1622, "loss": 1.5166, "learning_rate": 9.709352103338424e-06, "epoch": 0.5583975346687211, "percentage": 55.86, "elapsed_time": "2:54:49", "remaining_time": "2:18:09"} +{"current_steps": 907, "total_steps": 1622, "loss": 1.5074, "learning_rate": 9.687829384412945e-06, "epoch": 0.5590138674884437, "percentage": 55.92, "elapsed_time": "2:55:00", "remaining_time": "2:17:57"} +{"current_steps": 908, "total_steps": 1622, "loss": 1.4729, "learning_rate": 9.6663081128623e-06, "epoch": 0.5596302003081665, "percentage": 55.98, "elapsed_time": "2:55:11", "remaining_time": "2:17:45"} +{"current_steps": 909, "total_steps": 1622, "loss": 1.4939, "learning_rate": 9.644788388469557e-06, "epoch": 0.5602465331278891, "percentage": 56.04, "elapsed_time": "2:55:23", "remaining_time": "2:17:34"} +{"current_steps": 910, "total_steps": 1622, "loss": 1.4784, "learning_rate": 9.623270311010633e-06, "epoch": 0.5608628659476117, "percentage": 56.1, "elapsed_time": "2:55:34", "remaining_time": "2:17:22"} +{"current_steps": 911, "total_steps": 1622, "loss": 1.5287, "learning_rate": 9.60175398025381e-06, "epoch": 0.5614791987673343, "percentage": 56.17, "elapsed_time": "2:55:45", "remaining_time": "2:17:10"} +{"current_steps": 912, "total_steps": 1622, "loss": 1.5005, "learning_rate": 9.580239495959248e-06, "epoch": 0.562095531587057, "percentage": 56.23, "elapsed_time": "2:55:56", "remaining_time": "2:16:58"} +{"current_steps": 913, "total_steps": 1622, "loss": 1.44, "learning_rate": 9.558726957878574e-06, "epoch": 0.5627118644067797, "percentage": 56.29, "elapsed_time": "2:56:08", "remaining_time": "2:16:46"} +{"current_steps": 914, "total_steps": 1622, "loss": 1.5159, "learning_rate": 9.53721646575438e-06, "epoch": 0.5633281972265023, "percentage": 56.35, "elapsed_time": "2:56:19", "remaining_time": "2:16:34"} +{"current_steps": 915, "total_steps": 1622, "loss": 1.5543, "learning_rate": 9.515708119319759e-06, "epoch": 0.5639445300462249, "percentage": 56.41, "elapsed_time": "2:56:30", "remaining_time": "2:16:23"} +{"current_steps": 916, "total_steps": 1622, "loss": 1.4446, "learning_rate": 9.494202018297879e-06, "epoch": 0.5645608628659476, "percentage": 56.47, "elapsed_time": "2:56:41", "remaining_time": "2:16:11"} +{"current_steps": 917, "total_steps": 1622, "loss": 1.5158, "learning_rate": 9.47269826240148e-06, "epoch": 0.5651771956856703, "percentage": 56.54, "elapsed_time": "2:56:53", "remaining_time": "2:15:59"} +{"current_steps": 918, "total_steps": 1622, "loss": 1.4598, "learning_rate": 9.451196951332437e-06, "epoch": 0.5657935285053929, "percentage": 56.6, "elapsed_time": "2:57:04", "remaining_time": "2:15:47"} +{"current_steps": 919, "total_steps": 1622, "loss": 1.5017, "learning_rate": 9.429698184781284e-06, "epoch": 0.5664098613251156, "percentage": 56.66, "elapsed_time": "2:57:15", "remaining_time": "2:15:35"} +{"current_steps": 920, "total_steps": 1622, "loss": 1.4654, "learning_rate": 9.408202062426765e-06, "epoch": 0.5670261941448382, "percentage": 56.72, "elapsed_time": "2:57:26", "remaining_time": "2:15:23"} +{"current_steps": 921, "total_steps": 1622, "loss": 1.4825, "learning_rate": 9.38670868393536e-06, "epoch": 0.5676425269645609, "percentage": 56.78, "elapsed_time": "2:57:38", "remaining_time": "2:15:12"} +{"current_steps": 922, "total_steps": 1622, "loss": 1.5039, "learning_rate": 9.365218148960822e-06, "epoch": 0.5682588597842835, "percentage": 56.84, "elapsed_time": "2:57:49", "remaining_time": "2:15:00"} +{"current_steps": 923, "total_steps": 1622, "loss": 1.3966, "learning_rate": 9.343730557143728e-06, "epoch": 0.5688751926040062, "percentage": 56.91, "elapsed_time": "2:58:00", "remaining_time": "2:14:48"} +{"current_steps": 924, "total_steps": 1622, "loss": 1.5065, "learning_rate": 9.322246008111007e-06, "epoch": 0.5694915254237288, "percentage": 56.97, "elapsed_time": "2:58:11", "remaining_time": "2:14:36"} +{"current_steps": 925, "total_steps": 1622, "loss": 1.5008, "learning_rate": 9.300764601475474e-06, "epoch": 0.5701078582434514, "percentage": 57.03, "elapsed_time": "2:58:23", "remaining_time": "2:14:24"} +{"current_steps": 926, "total_steps": 1622, "loss": 1.511, "learning_rate": 9.279286436835387e-06, "epoch": 0.5707241910631741, "percentage": 57.09, "elapsed_time": "2:58:34", "remaining_time": "2:14:13"} +{"current_steps": 927, "total_steps": 1622, "loss": 1.4842, "learning_rate": 9.257811613773961e-06, "epoch": 0.5713405238828968, "percentage": 57.15, "elapsed_time": "2:58:45", "remaining_time": "2:14:01"} +{"current_steps": 928, "total_steps": 1622, "loss": 1.5162, "learning_rate": 9.236340231858921e-06, "epoch": 0.5719568567026194, "percentage": 57.21, "elapsed_time": "2:58:56", "remaining_time": "2:13:49"} +{"current_steps": 929, "total_steps": 1622, "loss": 1.5341, "learning_rate": 9.214872390642036e-06, "epoch": 0.572573189522342, "percentage": 57.27, "elapsed_time": "2:59:08", "remaining_time": "2:13:37"} +{"current_steps": 930, "total_steps": 1622, "loss": 1.4746, "learning_rate": 9.193408189658672e-06, "epoch": 0.5731895223420647, "percentage": 57.34, "elapsed_time": "2:59:19", "remaining_time": "2:13:25"} +{"current_steps": 931, "total_steps": 1622, "loss": 1.5021, "learning_rate": 9.171947728427294e-06, "epoch": 0.5738058551617874, "percentage": 57.4, "elapsed_time": "2:59:30", "remaining_time": "2:13:14"} +{"current_steps": 932, "total_steps": 1622, "loss": 1.4442, "learning_rate": 9.15049110644904e-06, "epoch": 0.57442218798151, "percentage": 57.46, "elapsed_time": "2:59:41", "remaining_time": "2:13:02"} +{"current_steps": 933, "total_steps": 1622, "loss": 1.4741, "learning_rate": 9.129038423207253e-06, "epoch": 0.5750385208012326, "percentage": 57.52, "elapsed_time": "2:59:53", "remaining_time": "2:12:50"} +{"current_steps": 934, "total_steps": 1622, "loss": 1.4447, "learning_rate": 9.107589778167006e-06, "epoch": 0.5756548536209554, "percentage": 57.58, "elapsed_time": "3:00:04", "remaining_time": "2:12:38"} +{"current_steps": 935, "total_steps": 1622, "loss": 1.4885, "learning_rate": 9.086145270774648e-06, "epoch": 0.576271186440678, "percentage": 57.64, "elapsed_time": "3:00:15", "remaining_time": "2:12:26"} +{"current_steps": 936, "total_steps": 1622, "loss": 1.499, "learning_rate": 9.064705000457349e-06, "epoch": 0.5768875192604006, "percentage": 57.71, "elapsed_time": "3:00:26", "remaining_time": "2:12:15"} +{"current_steps": 937, "total_steps": 1622, "loss": 1.4529, "learning_rate": 9.043269066622633e-06, "epoch": 0.5775038520801232, "percentage": 57.77, "elapsed_time": "3:00:38", "remaining_time": "2:12:03"} +{"current_steps": 938, "total_steps": 1622, "loss": 1.5045, "learning_rate": 9.021837568657912e-06, "epoch": 0.578120184899846, "percentage": 57.83, "elapsed_time": "3:00:49", "remaining_time": "2:11:51"} +{"current_steps": 939, "total_steps": 1622, "loss": 1.5101, "learning_rate": 9.000410605930038e-06, "epoch": 0.5787365177195686, "percentage": 57.89, "elapsed_time": "3:01:00", "remaining_time": "2:11:39"} +{"current_steps": 940, "total_steps": 1622, "loss": 1.5185, "learning_rate": 8.978988277784838e-06, "epoch": 0.5793528505392912, "percentage": 57.95, "elapsed_time": "3:01:11", "remaining_time": "2:11:27"} +{"current_steps": 941, "total_steps": 1622, "loss": 1.4699, "learning_rate": 8.957570683546637e-06, "epoch": 0.5799691833590138, "percentage": 58.01, "elapsed_time": "3:01:23", "remaining_time": "2:11:16"} +{"current_steps": 942, "total_steps": 1622, "loss": 1.4835, "learning_rate": 8.936157922517825e-06, "epoch": 0.5805855161787365, "percentage": 58.08, "elapsed_time": "3:01:34", "remaining_time": "2:11:04"} +{"current_steps": 943, "total_steps": 1622, "loss": 1.4811, "learning_rate": 8.91475009397838e-06, "epoch": 0.5812018489984592, "percentage": 58.14, "elapsed_time": "3:01:45", "remaining_time": "2:10:52"} +{"current_steps": 944, "total_steps": 1622, "loss": 1.5022, "learning_rate": 8.893347297185403e-06, "epoch": 0.5818181818181818, "percentage": 58.2, "elapsed_time": "3:01:56", "remaining_time": "2:10:40"} +{"current_steps": 945, "total_steps": 1622, "loss": 1.425, "learning_rate": 8.871949631372677e-06, "epoch": 0.5824345146379045, "percentage": 58.26, "elapsed_time": "3:02:08", "remaining_time": "2:10:28"} +{"current_steps": 946, "total_steps": 1622, "loss": 1.4553, "learning_rate": 8.850557195750182e-06, "epoch": 0.5830508474576271, "percentage": 58.32, "elapsed_time": "3:02:19", "remaining_time": "2:10:17"} +{"current_steps": 947, "total_steps": 1622, "loss": 1.4322, "learning_rate": 8.829170089503667e-06, "epoch": 0.5836671802773498, "percentage": 58.38, "elapsed_time": "3:02:30", "remaining_time": "2:10:05"} +{"current_steps": 948, "total_steps": 1622, "loss": 1.4421, "learning_rate": 8.807788411794147e-06, "epoch": 0.5842835130970724, "percentage": 58.45, "elapsed_time": "3:02:41", "remaining_time": "2:09:53"} +{"current_steps": 949, "total_steps": 1622, "loss": 1.5129, "learning_rate": 8.786412261757491e-06, "epoch": 0.5848998459167951, "percentage": 58.51, "elapsed_time": "3:02:53", "remaining_time": "2:09:41"} +{"current_steps": 950, "total_steps": 1622, "loss": 1.5015, "learning_rate": 8.765041738503927e-06, "epoch": 0.5855161787365177, "percentage": 58.57, "elapsed_time": "3:03:04", "remaining_time": "2:09:29"} +{"current_steps": 951, "total_steps": 1622, "loss": 1.4732, "learning_rate": 8.74367694111759e-06, "epoch": 0.5861325115562404, "percentage": 58.63, "elapsed_time": "3:03:29", "remaining_time": "2:09:28"} +{"current_steps": 952, "total_steps": 1622, "loss": 1.5018, "learning_rate": 8.722317968656078e-06, "epoch": 0.586748844375963, "percentage": 58.69, "elapsed_time": "3:03:40", "remaining_time": "2:09:16"} +{"current_steps": 953, "total_steps": 1622, "loss": 1.5019, "learning_rate": 8.70096492014998e-06, "epoch": 0.5873651771956857, "percentage": 58.75, "elapsed_time": "3:03:52", "remaining_time": "2:09:04"} +{"current_steps": 954, "total_steps": 1622, "loss": 1.5354, "learning_rate": 8.67961789460241e-06, "epoch": 0.5879815100154083, "percentage": 58.82, "elapsed_time": "3:04:03", "remaining_time": "2:08:52"} +{"current_steps": 955, "total_steps": 1622, "loss": 1.4515, "learning_rate": 8.658276990988564e-06, "epoch": 0.588597842835131, "percentage": 58.88, "elapsed_time": "3:04:15", "remaining_time": "2:08:41"} +{"current_steps": 956, "total_steps": 1622, "loss": 1.4722, "learning_rate": 8.636942308255253e-06, "epoch": 0.5892141756548536, "percentage": 58.94, "elapsed_time": "3:04:26", "remaining_time": "2:08:29"} +{"current_steps": 957, "total_steps": 1622, "loss": 1.4569, "learning_rate": 8.615613945320446e-06, "epoch": 0.5898305084745763, "percentage": 59.0, "elapsed_time": "3:04:37", "remaining_time": "2:08:17"} +{"current_steps": 958, "total_steps": 1622, "loss": 1.5256, "learning_rate": 8.594292001072806e-06, "epoch": 0.5904468412942989, "percentage": 59.06, "elapsed_time": "3:04:48", "remaining_time": "2:08:05"} +{"current_steps": 959, "total_steps": 1622, "loss": 1.5232, "learning_rate": 8.572976574371239e-06, "epoch": 0.5910631741140215, "percentage": 59.12, "elapsed_time": "3:04:59", "remaining_time": "2:07:53"} +{"current_steps": 960, "total_steps": 1622, "loss": 1.4668, "learning_rate": 8.551667764044433e-06, "epoch": 0.5916795069337443, "percentage": 59.19, "elapsed_time": "3:05:11", "remaining_time": "2:07:42"} +{"current_steps": 961, "total_steps": 1622, "loss": 1.4961, "learning_rate": 8.530365668890397e-06, "epoch": 0.5922958397534669, "percentage": 59.25, "elapsed_time": "3:05:22", "remaining_time": "2:07:30"} +{"current_steps": 962, "total_steps": 1622, "loss": 1.5067, "learning_rate": 8.509070387676003e-06, "epoch": 0.5929121725731895, "percentage": 59.31, "elapsed_time": "3:05:33", "remaining_time": "2:07:18"} +{"current_steps": 963, "total_steps": 1622, "loss": 1.4362, "learning_rate": 8.487782019136542e-06, "epoch": 0.5935285053929121, "percentage": 59.37, "elapsed_time": "3:05:44", "remaining_time": "2:07:06"} +{"current_steps": 964, "total_steps": 1622, "loss": 1.4101, "learning_rate": 8.466500661975238e-06, "epoch": 0.5941448382126349, "percentage": 59.43, "elapsed_time": "3:05:56", "remaining_time": "2:06:54"} +{"current_steps": 965, "total_steps": 1622, "loss": 1.452, "learning_rate": 8.445226414862815e-06, "epoch": 0.5947611710323575, "percentage": 59.49, "elapsed_time": "3:06:07", "remaining_time": "2:06:43"} +{"current_steps": 966, "total_steps": 1622, "loss": 1.482, "learning_rate": 8.423959376437041e-06, "epoch": 0.5953775038520801, "percentage": 59.56, "elapsed_time": "3:06:18", "remaining_time": "2:06:31"} +{"current_steps": 967, "total_steps": 1622, "loss": 1.507, "learning_rate": 8.40269964530224e-06, "epoch": 0.5959938366718027, "percentage": 59.62, "elapsed_time": "3:06:29", "remaining_time": "2:06:19"} +{"current_steps": 968, "total_steps": 1622, "loss": 1.5144, "learning_rate": 8.381447320028867e-06, "epoch": 0.5966101694915255, "percentage": 59.68, "elapsed_time": "3:06:41", "remaining_time": "2:06:07"} +{"current_steps": 969, "total_steps": 1622, "loss": 1.5084, "learning_rate": 8.360202499153047e-06, "epoch": 0.5972265023112481, "percentage": 59.74, "elapsed_time": "3:06:52", "remaining_time": "2:05:56"} +{"current_steps": 970, "total_steps": 1622, "loss": 1.4767, "learning_rate": 8.338965281176104e-06, "epoch": 0.5978428351309707, "percentage": 59.8, "elapsed_time": "3:07:04", "remaining_time": "2:05:44"} +{"current_steps": 971, "total_steps": 1622, "loss": 1.5258, "learning_rate": 8.317735764564108e-06, "epoch": 0.5984591679506934, "percentage": 59.86, "elapsed_time": "3:07:15", "remaining_time": "2:05:32"} +{"current_steps": 972, "total_steps": 1622, "loss": 1.4738, "learning_rate": 8.296514047747421e-06, "epoch": 0.599075500770416, "percentage": 59.93, "elapsed_time": "3:07:26", "remaining_time": "2:05:20"} +{"current_steps": 973, "total_steps": 1622, "loss": 1.4911, "learning_rate": 8.275300229120254e-06, "epoch": 0.5996918335901387, "percentage": 59.99, "elapsed_time": "3:07:37", "remaining_time": "2:05:09"} +{"current_steps": 974, "total_steps": 1622, "loss": 1.4905, "learning_rate": 8.254094407040183e-06, "epoch": 0.6003081664098613, "percentage": 60.05, "elapsed_time": "3:07:49", "remaining_time": "2:04:57"} +{"current_steps": 975, "total_steps": 1622, "loss": 1.5027, "learning_rate": 8.232896679827716e-06, "epoch": 0.600924499229584, "percentage": 60.11, "elapsed_time": "3:08:00", "remaining_time": "2:04:45"} +{"current_steps": 976, "total_steps": 1622, "loss": 1.5161, "learning_rate": 8.211707145765828e-06, "epoch": 0.6015408320493066, "percentage": 60.17, "elapsed_time": "3:08:11", "remaining_time": "2:04:33"} +{"current_steps": 977, "total_steps": 1622, "loss": 1.5115, "learning_rate": 8.190525903099505e-06, "epoch": 0.6021571648690293, "percentage": 60.23, "elapsed_time": "3:08:22", "remaining_time": "2:04:21"} +{"current_steps": 978, "total_steps": 1622, "loss": 1.4801, "learning_rate": 8.169353050035293e-06, "epoch": 0.6027734976887519, "percentage": 60.3, "elapsed_time": "3:08:34", "remaining_time": "2:04:10"} +{"current_steps": 979, "total_steps": 1622, "loss": 1.4929, "learning_rate": 8.14818868474084e-06, "epoch": 0.6033898305084746, "percentage": 60.36, "elapsed_time": "3:08:45", "remaining_time": "2:03:58"} +{"current_steps": 980, "total_steps": 1622, "loss": 1.4518, "learning_rate": 8.127032905344433e-06, "epoch": 0.6040061633281972, "percentage": 60.42, "elapsed_time": "3:08:56", "remaining_time": "2:03:46"} +{"current_steps": 981, "total_steps": 1622, "loss": 1.4421, "learning_rate": 8.105885809934561e-06, "epoch": 0.6046224961479199, "percentage": 60.48, "elapsed_time": "3:09:08", "remaining_time": "2:03:34"} +{"current_steps": 982, "total_steps": 1622, "loss": 1.5399, "learning_rate": 8.08474749655944e-06, "epoch": 0.6052388289676425, "percentage": 60.54, "elapsed_time": "3:09:19", "remaining_time": "2:03:23"} +{"current_steps": 983, "total_steps": 1622, "loss": 1.4884, "learning_rate": 8.063618063226584e-06, "epoch": 0.6058551617873652, "percentage": 60.6, "elapsed_time": "3:09:30", "remaining_time": "2:03:11"} +{"current_steps": 984, "total_steps": 1622, "loss": 1.4803, "learning_rate": 8.04249760790231e-06, "epoch": 0.6064714946070878, "percentage": 60.67, "elapsed_time": "3:09:41", "remaining_time": "2:02:59"} +{"current_steps": 985, "total_steps": 1622, "loss": 1.5565, "learning_rate": 8.021386228511333e-06, "epoch": 0.6070878274268104, "percentage": 60.73, "elapsed_time": "3:09:53", "remaining_time": "2:02:47"} +{"current_steps": 986, "total_steps": 1622, "loss": 1.5226, "learning_rate": 8.000284022936278e-06, "epoch": 0.6077041602465332, "percentage": 60.79, "elapsed_time": "3:10:04", "remaining_time": "2:02:36"} +{"current_steps": 987, "total_steps": 1622, "loss": 1.5495, "learning_rate": 7.979191089017224e-06, "epoch": 0.6083204930662558, "percentage": 60.85, "elapsed_time": "3:10:15", "remaining_time": "2:02:24"} +{"current_steps": 988, "total_steps": 1622, "loss": 1.4683, "learning_rate": 7.958107524551282e-06, "epoch": 0.6089368258859784, "percentage": 60.91, "elapsed_time": "3:10:27", "remaining_time": "2:02:12"} +{"current_steps": 989, "total_steps": 1622, "loss": 1.4712, "learning_rate": 7.937033427292112e-06, "epoch": 0.609553158705701, "percentage": 60.97, "elapsed_time": "3:10:38", "remaining_time": "2:02:00"} +{"current_steps": 990, "total_steps": 1622, "loss": 1.5189, "learning_rate": 7.915968894949478e-06, "epoch": 0.6101694915254238, "percentage": 61.04, "elapsed_time": "3:10:49", "remaining_time": "2:01:49"} +{"current_steps": 991, "total_steps": 1622, "loss": 1.4598, "learning_rate": 7.8949140251888e-06, "epoch": 0.6107858243451464, "percentage": 61.1, "elapsed_time": "3:11:00", "remaining_time": "2:01:37"} +{"current_steps": 992, "total_steps": 1622, "loss": 1.5179, "learning_rate": 7.873868915630697e-06, "epoch": 0.611402157164869, "percentage": 61.16, "elapsed_time": "3:11:12", "remaining_time": "2:01:25"} +{"current_steps": 993, "total_steps": 1622, "loss": 1.4756, "learning_rate": 7.852833663850528e-06, "epoch": 0.6120184899845916, "percentage": 61.22, "elapsed_time": "3:11:23", "remaining_time": "2:01:13"} +{"current_steps": 994, "total_steps": 1622, "loss": 1.4267, "learning_rate": 7.83180836737796e-06, "epoch": 0.6126348228043144, "percentage": 61.28, "elapsed_time": "3:11:34", "remaining_time": "2:01:02"} +{"current_steps": 995, "total_steps": 1622, "loss": 1.5511, "learning_rate": 7.81079312369649e-06, "epoch": 0.613251155624037, "percentage": 61.34, "elapsed_time": "3:11:45", "remaining_time": "2:00:50"} +{"current_steps": 996, "total_steps": 1622, "loss": 1.481, "learning_rate": 7.789788030243015e-06, "epoch": 0.6138674884437596, "percentage": 61.41, "elapsed_time": "3:11:57", "remaining_time": "2:00:38"} +{"current_steps": 997, "total_steps": 1622, "loss": 1.479, "learning_rate": 7.768793184407363e-06, "epoch": 0.6144838212634823, "percentage": 61.47, "elapsed_time": "3:12:08", "remaining_time": "2:00:26"} +{"current_steps": 998, "total_steps": 1622, "loss": 1.4758, "learning_rate": 7.74780868353185e-06, "epoch": 0.615100154083205, "percentage": 61.53, "elapsed_time": "3:12:19", "remaining_time": "2:00:15"} +{"current_steps": 999, "total_steps": 1622, "loss": 1.4799, "learning_rate": 7.726834624910835e-06, "epoch": 0.6157164869029276, "percentage": 61.59, "elapsed_time": "3:12:30", "remaining_time": "2:00:03"} +{"current_steps": 1000, "total_steps": 1622, "loss": 1.4719, "learning_rate": 7.705871105790252e-06, "epoch": 0.6163328197226502, "percentage": 61.65, "elapsed_time": "3:12:41", "remaining_time": "1:59:51"} +{"current_steps": 1001, "total_steps": 1622, "loss": 1.5068, "learning_rate": 7.684918223367171e-06, "epoch": 0.6169491525423729, "percentage": 61.71, "elapsed_time": "3:13:07", "remaining_time": "1:59:48"} +{"current_steps": 1002, "total_steps": 1622, "loss": 1.5286, "learning_rate": 7.66397607478936e-06, "epoch": 0.6175654853620955, "percentage": 61.78, "elapsed_time": "3:13:19", "remaining_time": "1:59:37"} +{"current_steps": 1003, "total_steps": 1622, "loss": 1.5335, "learning_rate": 7.64304475715479e-06, "epoch": 0.6181818181818182, "percentage": 61.84, "elapsed_time": "3:13:30", "remaining_time": "1:59:25"} +{"current_steps": 1004, "total_steps": 1622, "loss": 1.4912, "learning_rate": 7.622124367511236e-06, "epoch": 0.6187981510015408, "percentage": 61.9, "elapsed_time": "3:13:41", "remaining_time": "1:59:13"} +{"current_steps": 1005, "total_steps": 1622, "loss": 1.5374, "learning_rate": 7.601215002855813e-06, "epoch": 0.6194144838212635, "percentage": 61.96, "elapsed_time": "3:13:52", "remaining_time": "1:59:01"} +{"current_steps": 1006, "total_steps": 1622, "loss": 1.5697, "learning_rate": 7.580316760134489e-06, "epoch": 0.6200308166409861, "percentage": 62.02, "elapsed_time": "3:14:04", "remaining_time": "1:58:50"} +{"current_steps": 1007, "total_steps": 1622, "loss": 1.5089, "learning_rate": 7.559429736241694e-06, "epoch": 0.6206471494607088, "percentage": 62.08, "elapsed_time": "3:14:15", "remaining_time": "1:58:38"} +{"current_steps": 1008, "total_steps": 1622, "loss": 1.4303, "learning_rate": 7.53855402801983e-06, "epoch": 0.6212634822804314, "percentage": 62.15, "elapsed_time": "3:14:26", "remaining_time": "1:58:26"} +{"current_steps": 1009, "total_steps": 1622, "loss": 1.5617, "learning_rate": 7.517689732258833e-06, "epoch": 0.6218798151001541, "percentage": 62.21, "elapsed_time": "3:14:38", "remaining_time": "1:58:14"} +{"current_steps": 1010, "total_steps": 1622, "loss": 1.5199, "learning_rate": 7.496836945695728e-06, "epoch": 0.6224961479198767, "percentage": 62.27, "elapsed_time": "3:14:49", "remaining_time": "1:58:03"} +{"current_steps": 1011, "total_steps": 1622, "loss": 1.4188, "learning_rate": 7.475995765014176e-06, "epoch": 0.6231124807395994, "percentage": 62.33, "elapsed_time": "3:15:00", "remaining_time": "1:57:51"} +{"current_steps": 1012, "total_steps": 1622, "loss": 1.5599, "learning_rate": 7.455166286844031e-06, "epoch": 0.6237288135593221, "percentage": 62.39, "elapsed_time": "3:15:12", "remaining_time": "1:57:39"} +{"current_steps": 1013, "total_steps": 1622, "loss": 1.4616, "learning_rate": 7.434348607760882e-06, "epoch": 0.6243451463790447, "percentage": 62.45, "elapsed_time": "3:15:23", "remaining_time": "1:57:27"} +{"current_steps": 1014, "total_steps": 1622, "loss": 1.5504, "learning_rate": 7.41354282428562e-06, "epoch": 0.6249614791987673, "percentage": 62.52, "elapsed_time": "3:15:34", "remaining_time": "1:57:16"} +{"current_steps": 1015, "total_steps": 1622, "loss": 1.4497, "learning_rate": 7.392749032883977e-06, "epoch": 0.6255778120184899, "percentage": 62.58, "elapsed_time": "3:15:45", "remaining_time": "1:57:04"} +{"current_steps": 1016, "total_steps": 1622, "loss": 1.5749, "learning_rate": 7.371967329966081e-06, "epoch": 0.6261941448382127, "percentage": 62.64, "elapsed_time": "3:15:57", "remaining_time": "1:56:52"} +{"current_steps": 1017, "total_steps": 1622, "loss": 1.5304, "learning_rate": 7.351197811886021e-06, "epoch": 0.6268104776579353, "percentage": 62.7, "elapsed_time": "3:16:08", "remaining_time": "1:56:40"} +{"current_steps": 1018, "total_steps": 1622, "loss": 1.5234, "learning_rate": 7.330440574941384e-06, "epoch": 0.6274268104776579, "percentage": 62.76, "elapsed_time": "3:16:19", "remaining_time": "1:56:28"} +{"current_steps": 1019, "total_steps": 1622, "loss": 1.5456, "learning_rate": 7.309695715372815e-06, "epoch": 0.6280431432973805, "percentage": 62.82, "elapsed_time": "3:16:30", "remaining_time": "1:56:17"} +{"current_steps": 1020, "total_steps": 1622, "loss": 1.5351, "learning_rate": 7.288963329363577e-06, "epoch": 0.6286594761171033, "percentage": 62.89, "elapsed_time": "3:16:43", "remaining_time": "1:56:06"} +{"current_steps": 1021, "total_steps": 1622, "loss": 1.5202, "learning_rate": 7.268243513039094e-06, "epoch": 0.6292758089368259, "percentage": 62.95, "elapsed_time": "3:16:54", "remaining_time": "1:55:54"} +{"current_steps": 1022, "total_steps": 1622, "loss": 1.4825, "learning_rate": 7.24753636246652e-06, "epoch": 0.6298921417565485, "percentage": 63.01, "elapsed_time": "3:17:05", "remaining_time": "1:55:42"} +{"current_steps": 1023, "total_steps": 1622, "loss": 1.4295, "learning_rate": 7.226841973654269e-06, "epoch": 0.6305084745762712, "percentage": 63.07, "elapsed_time": "3:17:17", "remaining_time": "1:55:31"} +{"current_steps": 1024, "total_steps": 1622, "loss": 1.478, "learning_rate": 7.2061604425516e-06, "epoch": 0.6311248073959939, "percentage": 63.13, "elapsed_time": "3:17:28", "remaining_time": "1:55:19"} +{"current_steps": 1025, "total_steps": 1622, "loss": 1.4983, "learning_rate": 7.1854918650481535e-06, "epoch": 0.6317411402157165, "percentage": 63.19, "elapsed_time": "3:17:39", "remaining_time": "1:55:07"} +{"current_steps": 1026, "total_steps": 1622, "loss": 1.4545, "learning_rate": 7.164836336973498e-06, "epoch": 0.6323574730354391, "percentage": 63.26, "elapsed_time": "3:17:50", "remaining_time": "1:54:55"} +{"current_steps": 1027, "total_steps": 1622, "loss": 1.4983, "learning_rate": 7.144193954096717e-06, "epoch": 0.6329738058551618, "percentage": 63.32, "elapsed_time": "3:18:02", "remaining_time": "1:54:43"} +{"current_steps": 1028, "total_steps": 1622, "loss": 1.5112, "learning_rate": 7.123564812125942e-06, "epoch": 0.6335901386748845, "percentage": 63.38, "elapsed_time": "3:18:13", "remaining_time": "1:54:32"} +{"current_steps": 1029, "total_steps": 1622, "loss": 1.4863, "learning_rate": 7.102949006707902e-06, "epoch": 0.6342064714946071, "percentage": 63.44, "elapsed_time": "3:18:25", "remaining_time": "1:54:20"} +{"current_steps": 1030, "total_steps": 1622, "loss": 1.5237, "learning_rate": 7.082346633427505e-06, "epoch": 0.6348228043143297, "percentage": 63.5, "elapsed_time": "3:18:36", "remaining_time": "1:54:08"} +{"current_steps": 1031, "total_steps": 1622, "loss": 1.4233, "learning_rate": 7.061757787807375e-06, "epoch": 0.6354391371340524, "percentage": 63.56, "elapsed_time": "3:18:47", "remaining_time": "1:53:57"} +{"current_steps": 1032, "total_steps": 1622, "loss": 1.5028, "learning_rate": 7.041182565307412e-06, "epoch": 0.636055469953775, "percentage": 63.63, "elapsed_time": "3:18:58", "remaining_time": "1:53:45"} +{"current_steps": 1033, "total_steps": 1622, "loss": 1.4662, "learning_rate": 7.020621061324357e-06, "epoch": 0.6366718027734977, "percentage": 63.69, "elapsed_time": "3:19:09", "remaining_time": "1:53:33"} +{"current_steps": 1034, "total_steps": 1622, "loss": 1.5508, "learning_rate": 7.000073371191346e-06, "epoch": 0.6372881355932203, "percentage": 63.75, "elapsed_time": "3:19:21", "remaining_time": "1:53:21"} +{"current_steps": 1035, "total_steps": 1622, "loss": 1.4414, "learning_rate": 6.979539590177467e-06, "epoch": 0.637904468412943, "percentage": 63.81, "elapsed_time": "3:19:32", "remaining_time": "1:53:10"} +{"current_steps": 1036, "total_steps": 1622, "loss": 1.4786, "learning_rate": 6.959019813487313e-06, "epoch": 0.6385208012326656, "percentage": 63.87, "elapsed_time": "3:19:43", "remaining_time": "1:52:58"} +{"current_steps": 1037, "total_steps": 1622, "loss": 1.4668, "learning_rate": 6.938514136260551e-06, "epoch": 0.6391371340523883, "percentage": 63.93, "elapsed_time": "3:19:54", "remaining_time": "1:52:46"} +{"current_steps": 1038, "total_steps": 1622, "loss": 1.5102, "learning_rate": 6.918022653571483e-06, "epoch": 0.639753466872111, "percentage": 64.0, "elapsed_time": "3:20:06", "remaining_time": "1:52:34"} +{"current_steps": 1039, "total_steps": 1622, "loss": 1.4477, "learning_rate": 6.897545460428581e-06, "epoch": 0.6403697996918336, "percentage": 64.06, "elapsed_time": "3:20:17", "remaining_time": "1:52:23"} +{"current_steps": 1040, "total_steps": 1622, "loss": 1.4885, "learning_rate": 6.877082651774074e-06, "epoch": 0.6409861325115562, "percentage": 64.12, "elapsed_time": "3:20:28", "remaining_time": "1:52:11"} +{"current_steps": 1041, "total_steps": 1622, "loss": 1.4721, "learning_rate": 6.856634322483506e-06, "epoch": 0.6416024653312788, "percentage": 64.18, "elapsed_time": "3:20:39", "remaining_time": "1:51:59"} +{"current_steps": 1042, "total_steps": 1622, "loss": 1.5202, "learning_rate": 6.836200567365265e-06, "epoch": 0.6422187981510016, "percentage": 64.24, "elapsed_time": "3:20:51", "remaining_time": "1:51:47"} +{"current_steps": 1043, "total_steps": 1622, "loss": 1.4361, "learning_rate": 6.815781481160191e-06, "epoch": 0.6428351309707242, "percentage": 64.3, "elapsed_time": "3:21:02", "remaining_time": "1:51:36"} +{"current_steps": 1044, "total_steps": 1622, "loss": 1.4414, "learning_rate": 6.795377158541098e-06, "epoch": 0.6434514637904468, "percentage": 64.36, "elapsed_time": "3:21:13", "remaining_time": "1:51:24"} +{"current_steps": 1045, "total_steps": 1622, "loss": 1.4797, "learning_rate": 6.774987694112343e-06, "epoch": 0.6440677966101694, "percentage": 64.43, "elapsed_time": "3:21:24", "remaining_time": "1:51:12"} +{"current_steps": 1046, "total_steps": 1622, "loss": 1.4637, "learning_rate": 6.7546131824094086e-06, "epoch": 0.6446841294298922, "percentage": 64.49, "elapsed_time": "3:21:36", "remaining_time": "1:51:01"} +{"current_steps": 1047, "total_steps": 1622, "loss": 1.4386, "learning_rate": 6.7342537178984425e-06, "epoch": 0.6453004622496148, "percentage": 64.55, "elapsed_time": "3:21:47", "remaining_time": "1:50:49"} +{"current_steps": 1048, "total_steps": 1622, "loss": 1.4556, "learning_rate": 6.713909394975824e-06, "epoch": 0.6459167950693374, "percentage": 64.61, "elapsed_time": "3:21:58", "remaining_time": "1:50:37"} +{"current_steps": 1049, "total_steps": 1622, "loss": 1.4563, "learning_rate": 6.69358030796773e-06, "epoch": 0.6465331278890601, "percentage": 64.67, "elapsed_time": "3:22:09", "remaining_time": "1:50:25"} +{"current_steps": 1050, "total_steps": 1622, "loss": 1.4502, "learning_rate": 6.673266551129696e-06, "epoch": 0.6471494607087828, "percentage": 64.73, "elapsed_time": "3:22:21", "remaining_time": "1:50:14"} +{"current_steps": 1051, "total_steps": 1622, "loss": 1.4237, "learning_rate": 6.652968218646183e-06, "epoch": 0.6477657935285054, "percentage": 64.8, "elapsed_time": "3:22:46", "remaining_time": "1:50:09"} +{"current_steps": 1052, "total_steps": 1622, "loss": 1.4886, "learning_rate": 6.632685404630132e-06, "epoch": 0.648382126348228, "percentage": 64.86, "elapsed_time": "3:22:57", "remaining_time": "1:49:58"} +{"current_steps": 1053, "total_steps": 1622, "loss": 1.4824, "learning_rate": 6.612418203122535e-06, "epoch": 0.6489984591679507, "percentage": 64.92, "elapsed_time": "3:23:08", "remaining_time": "1:49:46"} +{"current_steps": 1054, "total_steps": 1622, "loss": 1.4481, "learning_rate": 6.592166708091998e-06, "epoch": 0.6496147919876734, "percentage": 64.98, "elapsed_time": "3:23:20", "remaining_time": "1:49:34"} +{"current_steps": 1055, "total_steps": 1622, "loss": 1.5016, "learning_rate": 6.571931013434302e-06, "epoch": 0.650231124807396, "percentage": 65.04, "elapsed_time": "3:23:31", "remaining_time": "1:49:22"} +{"current_steps": 1056, "total_steps": 1622, "loss": 1.5013, "learning_rate": 6.551711212971971e-06, "epoch": 0.6508474576271186, "percentage": 65.1, "elapsed_time": "3:23:42", "remaining_time": "1:49:11"} +{"current_steps": 1057, "total_steps": 1622, "loss": 1.5583, "learning_rate": 6.531507400453838e-06, "epoch": 0.6514637904468413, "percentage": 65.17, "elapsed_time": "3:23:53", "remaining_time": "1:48:59"} +{"current_steps": 1058, "total_steps": 1622, "loss": 1.5303, "learning_rate": 6.511319669554601e-06, "epoch": 0.652080123266564, "percentage": 65.23, "elapsed_time": "3:24:05", "remaining_time": "1:48:47"} +{"current_steps": 1059, "total_steps": 1622, "loss": 1.5526, "learning_rate": 6.491148113874402e-06, "epoch": 0.6526964560862866, "percentage": 65.29, "elapsed_time": "3:24:16", "remaining_time": "1:48:35"} +{"current_steps": 1060, "total_steps": 1622, "loss": 1.503, "learning_rate": 6.470992826938389e-06, "epoch": 0.6533127889060092, "percentage": 65.35, "elapsed_time": "3:24:27", "remaining_time": "1:48:24"} +{"current_steps": 1061, "total_steps": 1622, "loss": 1.4782, "learning_rate": 6.450853902196278e-06, "epoch": 0.6539291217257319, "percentage": 65.41, "elapsed_time": "3:24:38", "remaining_time": "1:48:12"} +{"current_steps": 1062, "total_steps": 1622, "loss": 1.4768, "learning_rate": 6.43073143302191e-06, "epoch": 0.6545454545454545, "percentage": 65.47, "elapsed_time": "3:24:50", "remaining_time": "1:48:00"} +{"current_steps": 1063, "total_steps": 1622, "loss": 1.4708, "learning_rate": 6.410625512712849e-06, "epoch": 0.6551617873651772, "percentage": 65.54, "elapsed_time": "3:25:01", "remaining_time": "1:47:49"} +{"current_steps": 1064, "total_steps": 1622, "loss": 1.5023, "learning_rate": 6.390536234489924e-06, "epoch": 0.6557781201848999, "percentage": 65.6, "elapsed_time": "3:25:12", "remaining_time": "1:47:37"} +{"current_steps": 1065, "total_steps": 1622, "loss": 1.4977, "learning_rate": 6.370463691496793e-06, "epoch": 0.6563944530046225, "percentage": 65.66, "elapsed_time": "3:25:24", "remaining_time": "1:47:25"} +{"current_steps": 1066, "total_steps": 1622, "loss": 1.5235, "learning_rate": 6.350407976799533e-06, "epoch": 0.6570107858243451, "percentage": 65.72, "elapsed_time": "3:25:35", "remaining_time": "1:47:13"} +{"current_steps": 1067, "total_steps": 1622, "loss": 1.477, "learning_rate": 6.3303691833861955e-06, "epoch": 0.6576271186440678, "percentage": 65.78, "elapsed_time": "3:25:46", "remaining_time": "1:47:02"} +{"current_steps": 1068, "total_steps": 1622, "loss": 1.4108, "learning_rate": 6.310347404166372e-06, "epoch": 0.6582434514637905, "percentage": 65.84, "elapsed_time": "3:25:58", "remaining_time": "1:46:50"} +{"current_steps": 1069, "total_steps": 1622, "loss": 1.4665, "learning_rate": 6.290342731970769e-06, "epoch": 0.6588597842835131, "percentage": 65.91, "elapsed_time": "3:26:09", "remaining_time": "1:46:38"} +{"current_steps": 1070, "total_steps": 1622, "loss": 1.5274, "learning_rate": 6.270355259550782e-06, "epoch": 0.6594761171032357, "percentage": 65.97, "elapsed_time": "3:26:20", "remaining_time": "1:46:26"} +{"current_steps": 1071, "total_steps": 1622, "loss": 1.5085, "learning_rate": 6.250385079578052e-06, "epoch": 0.6600924499229583, "percentage": 66.03, "elapsed_time": "3:26:31", "remaining_time": "1:46:15"} +{"current_steps": 1072, "total_steps": 1622, "loss": 1.4452, "learning_rate": 6.230432284644048e-06, "epoch": 0.6607087827426811, "percentage": 66.09, "elapsed_time": "3:26:43", "remaining_time": "1:46:03"} +{"current_steps": 1073, "total_steps": 1622, "loss": 1.4642, "learning_rate": 6.210496967259634e-06, "epoch": 0.6613251155624037, "percentage": 66.15, "elapsed_time": "3:26:54", "remaining_time": "1:45:51"} +{"current_steps": 1074, "total_steps": 1622, "loss": 1.4912, "learning_rate": 6.1905792198546424e-06, "epoch": 0.6619414483821263, "percentage": 66.21, "elapsed_time": "3:27:05", "remaining_time": "1:45:40"} +{"current_steps": 1075, "total_steps": 1622, "loss": 1.4657, "learning_rate": 6.170679134777433e-06, "epoch": 0.662557781201849, "percentage": 66.28, "elapsed_time": "3:27:17", "remaining_time": "1:45:28"} +{"current_steps": 1076, "total_steps": 1622, "loss": 1.4388, "learning_rate": 6.150796804294479e-06, "epoch": 0.6631741140215717, "percentage": 66.34, "elapsed_time": "3:27:28", "remaining_time": "1:45:16"} +{"current_steps": 1077, "total_steps": 1622, "loss": 1.551, "learning_rate": 6.130932320589947e-06, "epoch": 0.6637904468412943, "percentage": 66.4, "elapsed_time": "3:27:39", "remaining_time": "1:45:04"} +{"current_steps": 1078, "total_steps": 1622, "loss": 1.4895, "learning_rate": 6.111085775765233e-06, "epoch": 0.6644067796610169, "percentage": 66.46, "elapsed_time": "3:27:50", "remaining_time": "1:44:53"} +{"current_steps": 1079, "total_steps": 1622, "loss": 1.4511, "learning_rate": 6.0912572618385816e-06, "epoch": 0.6650231124807396, "percentage": 66.52, "elapsed_time": "3:28:02", "remaining_time": "1:44:41"} +{"current_steps": 1080, "total_steps": 1622, "loss": 1.4808, "learning_rate": 6.071446870744628e-06, "epoch": 0.6656394453004623, "percentage": 66.58, "elapsed_time": "3:28:13", "remaining_time": "1:44:29"} +{"current_steps": 1081, "total_steps": 1622, "loss": 1.477, "learning_rate": 6.051654694333975e-06, "epoch": 0.6662557781201849, "percentage": 66.65, "elapsed_time": "3:28:24", "remaining_time": "1:44:18"} +{"current_steps": 1082, "total_steps": 1622, "loss": 1.4932, "learning_rate": 6.0318808243727865e-06, "epoch": 0.6668721109399075, "percentage": 66.71, "elapsed_time": "3:28:35", "remaining_time": "1:44:06"} +{"current_steps": 1083, "total_steps": 1622, "loss": 1.5406, "learning_rate": 6.012125352542342e-06, "epoch": 0.6674884437596302, "percentage": 66.77, "elapsed_time": "3:28:47", "remaining_time": "1:43:54"} +{"current_steps": 1084, "total_steps": 1622, "loss": 1.4483, "learning_rate": 5.9923883704386195e-06, "epoch": 0.6681047765793529, "percentage": 66.83, "elapsed_time": "3:28:58", "remaining_time": "1:43:42"} +{"current_steps": 1085, "total_steps": 1622, "loss": 1.4385, "learning_rate": 5.972669969571865e-06, "epoch": 0.6687211093990755, "percentage": 66.89, "elapsed_time": "3:29:09", "remaining_time": "1:43:31"} +{"current_steps": 1086, "total_steps": 1622, "loss": 1.507, "learning_rate": 5.952970241366179e-06, "epoch": 0.6693374422187982, "percentage": 66.95, "elapsed_time": "3:29:20", "remaining_time": "1:43:19"} +{"current_steps": 1087, "total_steps": 1622, "loss": 1.467, "learning_rate": 5.933289277159084e-06, "epoch": 0.6699537750385208, "percentage": 67.02, "elapsed_time": "3:29:32", "remaining_time": "1:43:07"} +{"current_steps": 1088, "total_steps": 1622, "loss": 1.4902, "learning_rate": 5.9136271682011024e-06, "epoch": 0.6705701078582434, "percentage": 67.08, "elapsed_time": "3:29:43", "remaining_time": "1:42:56"} +{"current_steps": 1089, "total_steps": 1622, "loss": 1.492, "learning_rate": 5.893984005655338e-06, "epoch": 0.6711864406779661, "percentage": 67.14, "elapsed_time": "3:29:54", "remaining_time": "1:42:44"} +{"current_steps": 1090, "total_steps": 1622, "loss": 1.5909, "learning_rate": 5.874359880597047e-06, "epoch": 0.6718027734976888, "percentage": 67.2, "elapsed_time": "3:30:05", "remaining_time": "1:42:32"} +{"current_steps": 1091, "total_steps": 1622, "loss": 1.4097, "learning_rate": 5.854754884013216e-06, "epoch": 0.6724191063174114, "percentage": 67.26, "elapsed_time": "3:30:17", "remaining_time": "1:42:20"} +{"current_steps": 1092, "total_steps": 1622, "loss": 1.4835, "learning_rate": 5.8351691068021495e-06, "epoch": 0.673035439137134, "percentage": 67.32, "elapsed_time": "3:30:28", "remaining_time": "1:42:09"} +{"current_steps": 1093, "total_steps": 1622, "loss": 1.4918, "learning_rate": 5.815602639773039e-06, "epoch": 0.6736517719568567, "percentage": 67.39, "elapsed_time": "3:30:39", "remaining_time": "1:41:57"} +{"current_steps": 1094, "total_steps": 1622, "loss": 1.4627, "learning_rate": 5.796055573645536e-06, "epoch": 0.6742681047765794, "percentage": 67.45, "elapsed_time": "3:30:51", "remaining_time": "1:41:45"} +{"current_steps": 1095, "total_steps": 1622, "loss": 1.4655, "learning_rate": 5.7765279990493576e-06, "epoch": 0.674884437596302, "percentage": 67.51, "elapsed_time": "3:31:02", "remaining_time": "1:41:34"} +{"current_steps": 1096, "total_steps": 1622, "loss": 1.4635, "learning_rate": 5.757020006523828e-06, "epoch": 0.6755007704160246, "percentage": 67.57, "elapsed_time": "3:31:13", "remaining_time": "1:41:22"} +{"current_steps": 1097, "total_steps": 1622, "loss": 1.5151, "learning_rate": 5.737531686517501e-06, "epoch": 0.6761171032357473, "percentage": 67.63, "elapsed_time": "3:31:24", "remaining_time": "1:41:10"} +{"current_steps": 1098, "total_steps": 1622, "loss": 1.458, "learning_rate": 5.718063129387703e-06, "epoch": 0.67673343605547, "percentage": 67.69, "elapsed_time": "3:31:36", "remaining_time": "1:40:58"} +{"current_steps": 1099, "total_steps": 1622, "loss": 1.5084, "learning_rate": 5.698614425400131e-06, "epoch": 0.6773497688751926, "percentage": 67.76, "elapsed_time": "3:31:47", "remaining_time": "1:40:47"} +{"current_steps": 1100, "total_steps": 1622, "loss": 1.4471, "learning_rate": 5.6791856647284435e-06, "epoch": 0.6779661016949152, "percentage": 67.82, "elapsed_time": "3:31:58", "remaining_time": "1:40:35"} +{"current_steps": 1101, "total_steps": 1622, "loss": 1.5216, "learning_rate": 5.659776937453825e-06, "epoch": 0.678582434514638, "percentage": 67.88, "elapsed_time": "3:32:24", "remaining_time": "1:40:30"} +{"current_steps": 1102, "total_steps": 1622, "loss": 1.4632, "learning_rate": 5.6403883335645705e-06, "epoch": 0.6791987673343606, "percentage": 67.94, "elapsed_time": "3:32:35", "remaining_time": "1:40:18"} +{"current_steps": 1103, "total_steps": 1622, "loss": 1.4142, "learning_rate": 5.621019942955686e-06, "epoch": 0.6798151001540832, "percentage": 68.0, "elapsed_time": "3:32:46", "remaining_time": "1:40:07"} +{"current_steps": 1104, "total_steps": 1622, "loss": 1.4931, "learning_rate": 5.60167185542845e-06, "epoch": 0.6804314329738058, "percentage": 68.06, "elapsed_time": "3:32:58", "remaining_time": "1:39:55"} +{"current_steps": 1105, "total_steps": 1622, "loss": 1.4826, "learning_rate": 5.582344160690003e-06, "epoch": 0.6810477657935285, "percentage": 68.13, "elapsed_time": "3:33:09", "remaining_time": "1:39:43"} +{"current_steps": 1106, "total_steps": 1622, "loss": 1.558, "learning_rate": 5.5630369483529465e-06, "epoch": 0.6816640986132512, "percentage": 68.19, "elapsed_time": "3:33:20", "remaining_time": "1:39:32"} +{"current_steps": 1107, "total_steps": 1622, "loss": 1.4811, "learning_rate": 5.543750307934903e-06, "epoch": 0.6822804314329738, "percentage": 68.25, "elapsed_time": "3:33:31", "remaining_time": "1:39:20"} +{"current_steps": 1108, "total_steps": 1622, "loss": 1.4599, "learning_rate": 5.524484328858127e-06, "epoch": 0.6828967642526964, "percentage": 68.31, "elapsed_time": "3:33:42", "remaining_time": "1:39:08"} +{"current_steps": 1109, "total_steps": 1622, "loss": 1.4884, "learning_rate": 5.505239100449058e-06, "epoch": 0.6835130970724191, "percentage": 68.37, "elapsed_time": "3:33:54", "remaining_time": "1:38:56"} +{"current_steps": 1110, "total_steps": 1622, "loss": 1.4996, "learning_rate": 5.486014711937947e-06, "epoch": 0.6841294298921418, "percentage": 68.43, "elapsed_time": "3:34:05", "remaining_time": "1:38:45"} +{"current_steps": 1111, "total_steps": 1622, "loss": 1.4229, "learning_rate": 5.466811252458406e-06, "epoch": 0.6847457627118644, "percentage": 68.5, "elapsed_time": "3:34:16", "remaining_time": "1:38:33"} +{"current_steps": 1112, "total_steps": 1622, "loss": 1.479, "learning_rate": 5.447628811047012e-06, "epoch": 0.6853620955315871, "percentage": 68.56, "elapsed_time": "3:34:27", "remaining_time": "1:38:21"} +{"current_steps": 1113, "total_steps": 1622, "loss": 1.5026, "learning_rate": 5.4284674766429005e-06, "epoch": 0.6859784283513097, "percentage": 68.62, "elapsed_time": "3:34:39", "remaining_time": "1:38:09"} +{"current_steps": 1114, "total_steps": 1622, "loss": 1.4906, "learning_rate": 5.409327338087336e-06, "epoch": 0.6865947611710324, "percentage": 68.68, "elapsed_time": "3:34:50", "remaining_time": "1:37:58"} +{"current_steps": 1115, "total_steps": 1622, "loss": 1.5095, "learning_rate": 5.390208484123305e-06, "epoch": 0.687211093990755, "percentage": 68.74, "elapsed_time": "3:35:01", "remaining_time": "1:37:46"} +{"current_steps": 1116, "total_steps": 1622, "loss": 1.4732, "learning_rate": 5.371111003395125e-06, "epoch": 0.6878274268104777, "percentage": 68.8, "elapsed_time": "3:35:12", "remaining_time": "1:37:34"} +{"current_steps": 1117, "total_steps": 1622, "loss": 1.4886, "learning_rate": 5.352034984448002e-06, "epoch": 0.6884437596302003, "percentage": 68.87, "elapsed_time": "3:35:24", "remaining_time": "1:37:23"} +{"current_steps": 1118, "total_steps": 1622, "loss": 1.5247, "learning_rate": 5.3329805157276345e-06, "epoch": 0.689060092449923, "percentage": 68.93, "elapsed_time": "3:35:35", "remaining_time": "1:37:11"} +{"current_steps": 1119, "total_steps": 1622, "loss": 1.4683, "learning_rate": 5.313947685579817e-06, "epoch": 0.6896764252696456, "percentage": 68.99, "elapsed_time": "3:35:46", "remaining_time": "1:36:59"} +{"current_steps": 1120, "total_steps": 1622, "loss": 1.4444, "learning_rate": 5.294936582250003e-06, "epoch": 0.6902927580893683, "percentage": 69.05, "elapsed_time": "3:35:57", "remaining_time": "1:36:47"} +{"current_steps": 1121, "total_steps": 1622, "loss": 1.4321, "learning_rate": 5.275947293882913e-06, "epoch": 0.6909090909090909, "percentage": 69.11, "elapsed_time": "3:36:09", "remaining_time": "1:36:36"} +{"current_steps": 1122, "total_steps": 1622, "loss": 1.5005, "learning_rate": 5.256979908522128e-06, "epoch": 0.6915254237288135, "percentage": 69.17, "elapsed_time": "3:36:20", "remaining_time": "1:36:24"} +{"current_steps": 1123, "total_steps": 1622, "loss": 1.4159, "learning_rate": 5.2380345141096824e-06, "epoch": 0.6921417565485362, "percentage": 69.24, "elapsed_time": "3:36:31", "remaining_time": "1:36:12"} +{"current_steps": 1124, "total_steps": 1622, "loss": 1.4469, "learning_rate": 5.2191111984856225e-06, "epoch": 0.6927580893682589, "percentage": 69.3, "elapsed_time": "3:36:42", "remaining_time": "1:36:01"} +{"current_steps": 1125, "total_steps": 1622, "loss": 1.4474, "learning_rate": 5.200210049387653e-06, "epoch": 0.6933744221879815, "percentage": 69.36, "elapsed_time": "3:36:54", "remaining_time": "1:35:49"} +{"current_steps": 1126, "total_steps": 1622, "loss": 1.5174, "learning_rate": 5.181331154450703e-06, "epoch": 0.6939907550077041, "percentage": 69.42, "elapsed_time": "3:37:05", "remaining_time": "1:35:37"} +{"current_steps": 1127, "total_steps": 1622, "loss": 1.4245, "learning_rate": 5.162474601206497e-06, "epoch": 0.6946070878274269, "percentage": 69.48, "elapsed_time": "3:37:16", "remaining_time": "1:35:26"} +{"current_steps": 1128, "total_steps": 1622, "loss": 1.5169, "learning_rate": 5.143640477083199e-06, "epoch": 0.6952234206471495, "percentage": 69.54, "elapsed_time": "3:37:28", "remaining_time": "1:35:14"} +{"current_steps": 1129, "total_steps": 1622, "loss": 1.4587, "learning_rate": 5.124828869404972e-06, "epoch": 0.6958397534668721, "percentage": 69.61, "elapsed_time": "3:37:39", "remaining_time": "1:35:02"} +{"current_steps": 1130, "total_steps": 1622, "loss": 1.4596, "learning_rate": 5.106039865391574e-06, "epoch": 0.6964560862865947, "percentage": 69.67, "elapsed_time": "3:37:50", "remaining_time": "1:34:50"} +{"current_steps": 1131, "total_steps": 1622, "loss": 1.545, "learning_rate": 5.087273552157967e-06, "epoch": 0.6970724191063175, "percentage": 69.73, "elapsed_time": "3:38:01", "remaining_time": "1:34:39"} +{"current_steps": 1132, "total_steps": 1622, "loss": 1.4831, "learning_rate": 5.068530016713913e-06, "epoch": 0.6976887519260401, "percentage": 69.79, "elapsed_time": "3:38:13", "remaining_time": "1:34:27"} +{"current_steps": 1133, "total_steps": 1622, "loss": 1.4061, "learning_rate": 5.0498093459635566e-06, "epoch": 0.6983050847457627, "percentage": 69.85, "elapsed_time": "3:38:24", "remaining_time": "1:34:16"} +{"current_steps": 1134, "total_steps": 1622, "loss": 1.435, "learning_rate": 5.03111162670503e-06, "epoch": 0.6989214175654853, "percentage": 69.91, "elapsed_time": "3:38:36", "remaining_time": "1:34:04"} +{"current_steps": 1135, "total_steps": 1622, "loss": 1.4581, "learning_rate": 5.012436945630064e-06, "epoch": 0.699537750385208, "percentage": 69.98, "elapsed_time": "3:38:47", "remaining_time": "1:33:52"} +{"current_steps": 1136, "total_steps": 1622, "loss": 1.4704, "learning_rate": 4.993785389323558e-06, "epoch": 0.7001540832049307, "percentage": 70.04, "elapsed_time": "3:38:58", "remaining_time": "1:33:40"} +{"current_steps": 1137, "total_steps": 1622, "loss": 1.5276, "learning_rate": 4.975157044263198e-06, "epoch": 0.7007704160246533, "percentage": 70.1, "elapsed_time": "3:39:09", "remaining_time": "1:33:29"} +{"current_steps": 1138, "total_steps": 1622, "loss": 1.5343, "learning_rate": 4.9565519968190555e-06, "epoch": 0.701386748844376, "percentage": 70.16, "elapsed_time": "3:39:21", "remaining_time": "1:33:17"} +{"current_steps": 1139, "total_steps": 1622, "loss": 1.5114, "learning_rate": 4.937970333253191e-06, "epoch": 0.7020030816640986, "percentage": 70.22, "elapsed_time": "3:39:32", "remaining_time": "1:33:05"} +{"current_steps": 1140, "total_steps": 1622, "loss": 1.5251, "learning_rate": 4.9194121397192165e-06, "epoch": 0.7026194144838213, "percentage": 70.28, "elapsed_time": "3:39:43", "remaining_time": "1:32:54"} +{"current_steps": 1141, "total_steps": 1622, "loss": 1.4846, "learning_rate": 4.900877502261955e-06, "epoch": 0.7032357473035439, "percentage": 70.35, "elapsed_time": "3:39:54", "remaining_time": "1:32:42"} +{"current_steps": 1142, "total_steps": 1622, "loss": 1.4031, "learning_rate": 4.882366506817008e-06, "epoch": 0.7038520801232666, "percentage": 70.41, "elapsed_time": "3:40:06", "remaining_time": "1:32:30"} +{"current_steps": 1143, "total_steps": 1622, "loss": 1.4811, "learning_rate": 4.863879239210341e-06, "epoch": 0.7044684129429892, "percentage": 70.47, "elapsed_time": "3:40:17", "remaining_time": "1:32:19"} +{"current_steps": 1144, "total_steps": 1622, "loss": 1.436, "learning_rate": 4.845415785157925e-06, "epoch": 0.7050847457627119, "percentage": 70.53, "elapsed_time": "3:40:28", "remaining_time": "1:32:07"} +{"current_steps": 1145, "total_steps": 1622, "loss": 1.5323, "learning_rate": 4.826976230265325e-06, "epoch": 0.7057010785824345, "percentage": 70.59, "elapsed_time": "3:40:40", "remaining_time": "1:31:55"} +{"current_steps": 1146, "total_steps": 1622, "loss": 1.4147, "learning_rate": 4.8085606600272686e-06, "epoch": 0.7063174114021572, "percentage": 70.65, "elapsed_time": "3:40:51", "remaining_time": "1:31:44"} +{"current_steps": 1147, "total_steps": 1622, "loss": 1.5251, "learning_rate": 4.790169159827307e-06, "epoch": 0.7069337442218798, "percentage": 70.72, "elapsed_time": "3:41:02", "remaining_time": "1:31:32"} +{"current_steps": 1148, "total_steps": 1622, "loss": 1.4856, "learning_rate": 4.771801814937386e-06, "epoch": 0.7075500770416024, "percentage": 70.78, "elapsed_time": "3:41:13", "remaining_time": "1:31:20"} +{"current_steps": 1149, "total_steps": 1622, "loss": 1.4387, "learning_rate": 4.753458710517445e-06, "epoch": 0.7081664098613251, "percentage": 70.84, "elapsed_time": "3:41:25", "remaining_time": "1:31:08"} +{"current_steps": 1150, "total_steps": 1622, "loss": 1.4823, "learning_rate": 4.735139931615037e-06, "epoch": 0.7087827426810478, "percentage": 70.9, "elapsed_time": "3:41:36", "remaining_time": "1:30:57"} +{"current_steps": 1151, "total_steps": 1622, "loss": 1.4688, "learning_rate": 4.716845563164939e-06, "epoch": 0.7093990755007704, "percentage": 70.96, "elapsed_time": "3:42:01", "remaining_time": "1:30:51"} +{"current_steps": 1152, "total_steps": 1622, "loss": 1.5434, "learning_rate": 4.698575689988737e-06, "epoch": 0.710015408320493, "percentage": 71.02, "elapsed_time": "3:42:12", "remaining_time": "1:30:39"} +{"current_steps": 1153, "total_steps": 1622, "loss": 1.497, "learning_rate": 4.680330396794449e-06, "epoch": 0.7106317411402158, "percentage": 71.09, "elapsed_time": "3:42:24", "remaining_time": "1:30:27"} +{"current_steps": 1154, "total_steps": 1622, "loss": 1.4435, "learning_rate": 4.662109768176135e-06, "epoch": 0.7112480739599384, "percentage": 71.15, "elapsed_time": "3:42:35", "remaining_time": "1:30:16"} +{"current_steps": 1155, "total_steps": 1622, "loss": 1.4861, "learning_rate": 4.643913888613489e-06, "epoch": 0.711864406779661, "percentage": 71.21, "elapsed_time": "3:42:46", "remaining_time": "1:30:04"} +{"current_steps": 1156, "total_steps": 1622, "loss": 1.4715, "learning_rate": 4.6257428424714575e-06, "epoch": 0.7124807395993836, "percentage": 71.27, "elapsed_time": "3:42:57", "remaining_time": "1:29:52"} +{"current_steps": 1157, "total_steps": 1622, "loss": 1.509, "learning_rate": 4.6075967139998555e-06, "epoch": 0.7130970724191064, "percentage": 71.33, "elapsed_time": "3:43:09", "remaining_time": "1:29:41"} +{"current_steps": 1158, "total_steps": 1622, "loss": 1.4992, "learning_rate": 4.589475587332959e-06, "epoch": 0.713713405238829, "percentage": 71.39, "elapsed_time": "3:43:20", "remaining_time": "1:29:29"} +{"current_steps": 1159, "total_steps": 1622, "loss": 1.5294, "learning_rate": 4.571379546489121e-06, "epoch": 0.7143297380585516, "percentage": 71.45, "elapsed_time": "3:43:31", "remaining_time": "1:29:17"} +{"current_steps": 1160, "total_steps": 1622, "loss": 1.5364, "learning_rate": 4.553308675370393e-06, "epoch": 0.7149460708782742, "percentage": 71.52, "elapsed_time": "3:43:42", "remaining_time": "1:29:06"} +{"current_steps": 1161, "total_steps": 1622, "loss": 1.4748, "learning_rate": 4.5352630577621295e-06, "epoch": 0.715562403697997, "percentage": 71.58, "elapsed_time": "3:43:54", "remaining_time": "1:28:54"} +{"current_steps": 1162, "total_steps": 1622, "loss": 1.5757, "learning_rate": 4.517242777332587e-06, "epoch": 0.7161787365177196, "percentage": 71.64, "elapsed_time": "3:44:05", "remaining_time": "1:28:42"} +{"current_steps": 1163, "total_steps": 1622, "loss": 1.415, "learning_rate": 4.4992479176325465e-06, "epoch": 0.7167950693374422, "percentage": 71.7, "elapsed_time": "3:44:16", "remaining_time": "1:28:30"} +{"current_steps": 1164, "total_steps": 1622, "loss": 1.4363, "learning_rate": 4.481278562094939e-06, "epoch": 0.7174114021571649, "percentage": 71.76, "elapsed_time": "3:44:27", "remaining_time": "1:28:19"} +{"current_steps": 1165, "total_steps": 1622, "loss": 1.4448, "learning_rate": 4.463334794034436e-06, "epoch": 0.7180277349768875, "percentage": 71.82, "elapsed_time": "3:44:39", "remaining_time": "1:28:07"} +{"current_steps": 1166, "total_steps": 1622, "loss": 1.4048, "learning_rate": 4.445416696647069e-06, "epoch": 0.7186440677966102, "percentage": 71.89, "elapsed_time": "3:44:50", "remaining_time": "1:27:55"} +{"current_steps": 1167, "total_steps": 1622, "loss": 1.4477, "learning_rate": 4.427524353009862e-06, "epoch": 0.7192604006163328, "percentage": 71.95, "elapsed_time": "3:45:01", "remaining_time": "1:27:44"} +{"current_steps": 1168, "total_steps": 1622, "loss": 1.4959, "learning_rate": 4.409657846080418e-06, "epoch": 0.7198767334360555, "percentage": 72.01, "elapsed_time": "3:45:12", "remaining_time": "1:27:32"} +{"current_steps": 1169, "total_steps": 1622, "loss": 1.5074, "learning_rate": 4.391817258696554e-06, "epoch": 0.7204930662557781, "percentage": 72.07, "elapsed_time": "3:45:24", "remaining_time": "1:27:20"} +{"current_steps": 1170, "total_steps": 1622, "loss": 1.4769, "learning_rate": 4.3740026735759145e-06, "epoch": 0.7211093990755008, "percentage": 72.13, "elapsed_time": "3:45:35", "remaining_time": "1:27:09"} +{"current_steps": 1171, "total_steps": 1622, "loss": 1.5293, "learning_rate": 4.356214173315582e-06, "epoch": 0.7217257318952234, "percentage": 72.19, "elapsed_time": "3:45:46", "remaining_time": "1:26:57"} +{"current_steps": 1172, "total_steps": 1622, "loss": 1.4542, "learning_rate": 4.33845184039169e-06, "epoch": 0.7223420647149461, "percentage": 72.26, "elapsed_time": "3:45:57", "remaining_time": "1:26:45"} +{"current_steps": 1173, "total_steps": 1622, "loss": 1.4504, "learning_rate": 4.320715757159063e-06, "epoch": 0.7229583975346687, "percentage": 72.32, "elapsed_time": "3:46:09", "remaining_time": "1:26:34"} +{"current_steps": 1174, "total_steps": 1622, "loss": 1.4725, "learning_rate": 4.303006005850804e-06, "epoch": 0.7235747303543913, "percentage": 72.38, "elapsed_time": "3:46:20", "remaining_time": "1:26:22"} +{"current_steps": 1175, "total_steps": 1622, "loss": 1.4832, "learning_rate": 4.285322668577939e-06, "epoch": 0.724191063174114, "percentage": 72.44, "elapsed_time": "3:46:31", "remaining_time": "1:26:10"} +{"current_steps": 1176, "total_steps": 1622, "loss": 1.4541, "learning_rate": 4.267665827329022e-06, "epoch": 0.7248073959938367, "percentage": 72.5, "elapsed_time": "3:46:43", "remaining_time": "1:25:59"} +{"current_steps": 1177, "total_steps": 1622, "loss": 1.4198, "learning_rate": 4.250035563969751e-06, "epoch": 0.7254237288135593, "percentage": 72.56, "elapsed_time": "3:46:54", "remaining_time": "1:25:47"} +{"current_steps": 1178, "total_steps": 1622, "loss": 1.4517, "learning_rate": 4.232431960242611e-06, "epoch": 0.7260400616332819, "percentage": 72.63, "elapsed_time": "3:47:05", "remaining_time": "1:25:35"} +{"current_steps": 1179, "total_steps": 1622, "loss": 1.4985, "learning_rate": 4.214855097766469e-06, "epoch": 0.7266563944530047, "percentage": 72.69, "elapsed_time": "3:47:16", "remaining_time": "1:25:23"} +{"current_steps": 1180, "total_steps": 1622, "loss": 1.4057, "learning_rate": 4.197305058036206e-06, "epoch": 0.7272727272727273, "percentage": 72.75, "elapsed_time": "3:47:28", "remaining_time": "1:25:12"} +{"current_steps": 1181, "total_steps": 1622, "loss": 1.5047, "learning_rate": 4.179781922422349e-06, "epoch": 0.7278890600924499, "percentage": 72.81, "elapsed_time": "3:47:39", "remaining_time": "1:25:00"} +{"current_steps": 1182, "total_steps": 1622, "loss": 1.4402, "learning_rate": 4.162285772170673e-06, "epoch": 0.7285053929121725, "percentage": 72.87, "elapsed_time": "3:47:50", "remaining_time": "1:24:48"} +{"current_steps": 1183, "total_steps": 1622, "loss": 1.4721, "learning_rate": 4.144816688401848e-06, "epoch": 0.7291217257318953, "percentage": 72.93, "elapsed_time": "3:48:01", "remaining_time": "1:24:37"} +{"current_steps": 1184, "total_steps": 1622, "loss": 1.4488, "learning_rate": 4.1273747521110405e-06, "epoch": 0.7297380585516179, "percentage": 73.0, "elapsed_time": "3:48:13", "remaining_time": "1:24:25"} +{"current_steps": 1185, "total_steps": 1622, "loss": 1.4778, "learning_rate": 4.109960044167548e-06, "epoch": 0.7303543913713405, "percentage": 73.06, "elapsed_time": "3:48:24", "remaining_time": "1:24:13"} +{"current_steps": 1186, "total_steps": 1622, "loss": 1.4334, "learning_rate": 4.092572645314434e-06, "epoch": 0.7309707241910631, "percentage": 73.12, "elapsed_time": "3:48:35", "remaining_time": "1:24:02"} +{"current_steps": 1187, "total_steps": 1622, "loss": 1.4793, "learning_rate": 4.075212636168131e-06, "epoch": 0.7315870570107859, "percentage": 73.18, "elapsed_time": "3:48:46", "remaining_time": "1:23:50"} +{"current_steps": 1188, "total_steps": 1622, "loss": 1.5072, "learning_rate": 4.057880097218093e-06, "epoch": 0.7322033898305085, "percentage": 73.24, "elapsed_time": "3:48:58", "remaining_time": "1:23:38"} +{"current_steps": 1189, "total_steps": 1622, "loss": 1.4521, "learning_rate": 4.040575108826399e-06, "epoch": 0.7328197226502311, "percentage": 73.3, "elapsed_time": "3:49:09", "remaining_time": "1:23:27"} +{"current_steps": 1190, "total_steps": 1622, "loss": 1.5349, "learning_rate": 4.023297751227389e-06, "epoch": 0.7334360554699538, "percentage": 73.37, "elapsed_time": "3:49:20", "remaining_time": "1:23:15"} +{"current_steps": 1191, "total_steps": 1622, "loss": 1.4367, "learning_rate": 4.006048104527304e-06, "epoch": 0.7340523882896764, "percentage": 73.43, "elapsed_time": "3:49:32", "remaining_time": "1:23:03"} +{"current_steps": 1192, "total_steps": 1622, "loss": 1.4978, "learning_rate": 3.988826248703892e-06, "epoch": 0.7346687211093991, "percentage": 73.49, "elapsed_time": "3:49:43", "remaining_time": "1:22:52"} +{"current_steps": 1193, "total_steps": 1622, "loss": 1.4504, "learning_rate": 3.971632263606053e-06, "epoch": 0.7352850539291217, "percentage": 73.55, "elapsed_time": "3:49:54", "remaining_time": "1:22:40"} +{"current_steps": 1194, "total_steps": 1622, "loss": 1.4693, "learning_rate": 3.954466228953473e-06, "epoch": 0.7359013867488444, "percentage": 73.61, "elapsed_time": "3:50:05", "remaining_time": "1:22:28"} +{"current_steps": 1195, "total_steps": 1622, "loss": 1.4674, "learning_rate": 3.937328224336232e-06, "epoch": 0.736517719568567, "percentage": 73.67, "elapsed_time": "3:50:17", "remaining_time": "1:22:17"} +{"current_steps": 1196, "total_steps": 1622, "loss": 1.4986, "learning_rate": 3.920218329214456e-06, "epoch": 0.7371340523882897, "percentage": 73.74, "elapsed_time": "3:50:28", "remaining_time": "1:22:05"} +{"current_steps": 1197, "total_steps": 1622, "loss": 1.465, "learning_rate": 3.903136622917943e-06, "epoch": 0.7377503852080123, "percentage": 73.8, "elapsed_time": "3:50:39", "remaining_time": "1:21:53"} +{"current_steps": 1198, "total_steps": 1622, "loss": 1.4602, "learning_rate": 3.8860831846458e-06, "epoch": 0.738366718027735, "percentage": 73.86, "elapsed_time": "3:50:50", "remaining_time": "1:21:42"} +{"current_steps": 1199, "total_steps": 1622, "loss": 1.5476, "learning_rate": 3.86905809346605e-06, "epoch": 0.7389830508474576, "percentage": 73.92, "elapsed_time": "3:51:02", "remaining_time": "1:21:30"} +{"current_steps": 1200, "total_steps": 1622, "loss": 1.5137, "learning_rate": 3.8520614283153014e-06, "epoch": 0.7395993836671803, "percentage": 73.98, "elapsed_time": "3:51:13", "remaining_time": "1:21:18"} +{"current_steps": 1201, "total_steps": 1622, "loss": 1.4427, "learning_rate": 3.835093267998367e-06, "epoch": 0.7402157164869029, "percentage": 74.04, "elapsed_time": "3:51:38", "remaining_time": "1:21:12"} +{"current_steps": 1202, "total_steps": 1622, "loss": 1.4086, "learning_rate": 3.818153691187889e-06, "epoch": 0.7408320493066256, "percentage": 74.11, "elapsed_time": "3:51:49", "remaining_time": "1:21:00"} +{"current_steps": 1203, "total_steps": 1622, "loss": 1.4437, "learning_rate": 3.8012427764239814e-06, "epoch": 0.7414483821263482, "percentage": 74.17, "elapsed_time": "3:52:01", "remaining_time": "1:20:48"} +{"current_steps": 1204, "total_steps": 1622, "loss": 1.4811, "learning_rate": 3.784360602113878e-06, "epoch": 0.7420647149460708, "percentage": 74.23, "elapsed_time": "3:52:12", "remaining_time": "1:20:36"} +{"current_steps": 1205, "total_steps": 1622, "loss": 1.4877, "learning_rate": 3.7675072465315464e-06, "epoch": 0.7426810477657936, "percentage": 74.29, "elapsed_time": "3:52:23", "remaining_time": "1:20:25"} +{"current_steps": 1206, "total_steps": 1622, "loss": 1.4806, "learning_rate": 3.75068278781734e-06, "epoch": 0.7432973805855162, "percentage": 74.35, "elapsed_time": "3:52:34", "remaining_time": "1:20:13"} +{"current_steps": 1207, "total_steps": 1622, "loss": 1.531, "learning_rate": 3.7338873039776392e-06, "epoch": 0.7439137134052388, "percentage": 74.41, "elapsed_time": "3:52:46", "remaining_time": "1:20:01"} +{"current_steps": 1208, "total_steps": 1622, "loss": 1.4476, "learning_rate": 3.7171208728844734e-06, "epoch": 0.7445300462249614, "percentage": 74.48, "elapsed_time": "3:52:57", "remaining_time": "1:19:50"} +{"current_steps": 1209, "total_steps": 1622, "loss": 1.4577, "learning_rate": 3.700383572275169e-06, "epoch": 0.7451463790446842, "percentage": 74.54, "elapsed_time": "3:53:08", "remaining_time": "1:19:38"} +{"current_steps": 1210, "total_steps": 1622, "loss": 1.4526, "learning_rate": 3.6836754797520023e-06, "epoch": 0.7457627118644068, "percentage": 74.6, "elapsed_time": "3:53:19", "remaining_time": "1:19:26"} +{"current_steps": 1211, "total_steps": 1622, "loss": 1.4793, "learning_rate": 3.666996672781813e-06, "epoch": 0.7463790446841294, "percentage": 74.66, "elapsed_time": "3:53:31", "remaining_time": "1:19:15"} +{"current_steps": 1212, "total_steps": 1622, "loss": 1.5002, "learning_rate": 3.6503472286956587e-06, "epoch": 0.746995377503852, "percentage": 74.72, "elapsed_time": "3:53:42", "remaining_time": "1:19:03"} +{"current_steps": 1213, "total_steps": 1622, "loss": 1.5252, "learning_rate": 3.633727224688467e-06, "epoch": 0.7476117103235748, "percentage": 74.78, "elapsed_time": "3:53:53", "remaining_time": "1:18:51"} +{"current_steps": 1214, "total_steps": 1622, "loss": 1.4843, "learning_rate": 3.617136737818666e-06, "epoch": 0.7482280431432974, "percentage": 74.85, "elapsed_time": "3:54:04", "remaining_time": "1:18:40"} +{"current_steps": 1215, "total_steps": 1622, "loss": 1.4499, "learning_rate": 3.60057584500781e-06, "epoch": 0.74884437596302, "percentage": 74.91, "elapsed_time": "3:54:16", "remaining_time": "1:18:28"} +{"current_steps": 1216, "total_steps": 1622, "loss": 1.4601, "learning_rate": 3.5840446230402604e-06, "epoch": 0.7494607087827427, "percentage": 74.97, "elapsed_time": "3:54:27", "remaining_time": "1:18:16"} +{"current_steps": 1217, "total_steps": 1622, "loss": 1.4393, "learning_rate": 3.567543148562812e-06, "epoch": 0.7500770416024654, "percentage": 75.03, "elapsed_time": "3:54:38", "remaining_time": "1:18:05"} +{"current_steps": 1218, "total_steps": 1622, "loss": 1.4934, "learning_rate": 3.551071498084312e-06, "epoch": 0.750693374422188, "percentage": 75.09, "elapsed_time": "3:54:50", "remaining_time": "1:17:53"} +{"current_steps": 1219, "total_steps": 1622, "loss": 1.5173, "learning_rate": 3.534629747975352e-06, "epoch": 0.7513097072419106, "percentage": 75.15, "elapsed_time": "3:55:01", "remaining_time": "1:17:41"} +{"current_steps": 1220, "total_steps": 1622, "loss": 1.4611, "learning_rate": 3.518217974467891e-06, "epoch": 0.7519260400616333, "percentage": 75.22, "elapsed_time": "3:55:12", "remaining_time": "1:17:30"} +{"current_steps": 1221, "total_steps": 1622, "loss": 1.4256, "learning_rate": 3.501836253654879e-06, "epoch": 0.752542372881356, "percentage": 75.28, "elapsed_time": "3:55:23", "remaining_time": "1:17:18"} +{"current_steps": 1222, "total_steps": 1622, "loss": 1.4408, "learning_rate": 3.4854846614899506e-06, "epoch": 0.7531587057010786, "percentage": 75.34, "elapsed_time": "3:55:35", "remaining_time": "1:17:06"} +{"current_steps": 1223, "total_steps": 1622, "loss": 1.4043, "learning_rate": 3.4691632737870438e-06, "epoch": 0.7537750385208012, "percentage": 75.4, "elapsed_time": "3:55:46", "remaining_time": "1:16:55"} +{"current_steps": 1224, "total_steps": 1622, "loss": 1.5161, "learning_rate": 3.452872166220048e-06, "epoch": 0.7543913713405239, "percentage": 75.46, "elapsed_time": "3:55:57", "remaining_time": "1:16:43"} +{"current_steps": 1225, "total_steps": 1622, "loss": 1.452, "learning_rate": 3.4366114143224595e-06, "epoch": 0.7550077041602465, "percentage": 75.52, "elapsed_time": "3:56:08", "remaining_time": "1:16:31"} +{"current_steps": 1226, "total_steps": 1622, "loss": 1.4947, "learning_rate": 3.420381093487041e-06, "epoch": 0.7556240369799692, "percentage": 75.59, "elapsed_time": "3:56:20", "remaining_time": "1:16:20"} +{"current_steps": 1227, "total_steps": 1622, "loss": 1.4993, "learning_rate": 3.4041812789654494e-06, "epoch": 0.7562403697996918, "percentage": 75.65, "elapsed_time": "3:56:31", "remaining_time": "1:16:08"} +{"current_steps": 1228, "total_steps": 1622, "loss": 1.5259, "learning_rate": 3.3880120458679042e-06, "epoch": 0.7568567026194145, "percentage": 75.71, "elapsed_time": "3:56:42", "remaining_time": "1:15:56"} +{"current_steps": 1229, "total_steps": 1622, "loss": 1.4655, "learning_rate": 3.371873469162841e-06, "epoch": 0.7574730354391371, "percentage": 75.77, "elapsed_time": "3:56:53", "remaining_time": "1:15:45"} +{"current_steps": 1230, "total_steps": 1622, "loss": 1.495, "learning_rate": 3.355765623676549e-06, "epoch": 0.7580893682588598, "percentage": 75.83, "elapsed_time": "3:57:05", "remaining_time": "1:15:33"} +{"current_steps": 1231, "total_steps": 1622, "loss": 1.5015, "learning_rate": 3.3396885840928306e-06, "epoch": 0.7587057010785825, "percentage": 75.89, "elapsed_time": "3:57:18", "remaining_time": "1:15:22"} +{"current_steps": 1232, "total_steps": 1622, "loss": 1.46, "learning_rate": 3.3236424249526677e-06, "epoch": 0.7593220338983051, "percentage": 75.96, "elapsed_time": "3:57:29", "remaining_time": "1:15:10"} +{"current_steps": 1233, "total_steps": 1622, "loss": 1.4479, "learning_rate": 3.307627220653864e-06, "epoch": 0.7599383667180277, "percentage": 76.02, "elapsed_time": "3:57:40", "remaining_time": "1:14:59"} +{"current_steps": 1234, "total_steps": 1622, "loss": 1.4345, "learning_rate": 3.2916430454506844e-06, "epoch": 0.7605546995377503, "percentage": 76.08, "elapsed_time": "3:57:52", "remaining_time": "1:14:47"} +{"current_steps": 1235, "total_steps": 1622, "loss": 1.4111, "learning_rate": 3.2756899734535465e-06, "epoch": 0.7611710323574731, "percentage": 76.14, "elapsed_time": "3:58:03", "remaining_time": "1:14:35"} +{"current_steps": 1236, "total_steps": 1622, "loss": 1.4683, "learning_rate": 3.2597680786286566e-06, "epoch": 0.7617873651771957, "percentage": 76.2, "elapsed_time": "3:58:14", "remaining_time": "1:14:24"} +{"current_steps": 1237, "total_steps": 1622, "loss": 1.4287, "learning_rate": 3.24387743479766e-06, "epoch": 0.7624036979969183, "percentage": 76.26, "elapsed_time": "3:58:26", "remaining_time": "1:14:12"} +{"current_steps": 1238, "total_steps": 1622, "loss": 1.4888, "learning_rate": 3.2280181156373093e-06, "epoch": 0.7630200308166409, "percentage": 76.33, "elapsed_time": "3:58:37", "remaining_time": "1:14:00"} +{"current_steps": 1239, "total_steps": 1622, "loss": 1.4705, "learning_rate": 3.212190194679128e-06, "epoch": 0.7636363636363637, "percentage": 76.39, "elapsed_time": "3:58:48", "remaining_time": "1:13:49"} +{"current_steps": 1240, "total_steps": 1622, "loss": 1.4639, "learning_rate": 3.1963937453090545e-06, "epoch": 0.7642526964560863, "percentage": 76.45, "elapsed_time": "3:58:59", "remaining_time": "1:13:37"} +{"current_steps": 1241, "total_steps": 1622, "loss": 1.4318, "learning_rate": 3.180628840767107e-06, "epoch": 0.7648690292758089, "percentage": 76.51, "elapsed_time": "3:59:11", "remaining_time": "1:13:25"} +{"current_steps": 1242, "total_steps": 1622, "loss": 1.5227, "learning_rate": 3.1648955541470603e-06, "epoch": 0.7654853620955316, "percentage": 76.57, "elapsed_time": "3:59:22", "remaining_time": "1:13:14"} +{"current_steps": 1243, "total_steps": 1622, "loss": 1.4891, "learning_rate": 3.149193958396081e-06, "epoch": 0.7661016949152543, "percentage": 76.63, "elapsed_time": "3:59:33", "remaining_time": "1:13:02"} +{"current_steps": 1244, "total_steps": 1622, "loss": 1.4902, "learning_rate": 3.1335241263144e-06, "epoch": 0.7667180277349769, "percentage": 76.7, "elapsed_time": "3:59:44", "remaining_time": "1:12:50"} +{"current_steps": 1245, "total_steps": 1622, "loss": 1.497, "learning_rate": 3.11788613055499e-06, "epoch": 0.7673343605546995, "percentage": 76.76, "elapsed_time": "3:59:56", "remaining_time": "1:12:39"} +{"current_steps": 1246, "total_steps": 1622, "loss": 1.4538, "learning_rate": 3.1022800436232003e-06, "epoch": 0.7679506933744222, "percentage": 76.82, "elapsed_time": "4:00:07", "remaining_time": "1:12:27"} +{"current_steps": 1247, "total_steps": 1622, "loss": 1.5022, "learning_rate": 3.086705937876441e-06, "epoch": 0.7685670261941449, "percentage": 76.88, "elapsed_time": "4:00:18", "remaining_time": "1:12:15"} +{"current_steps": 1248, "total_steps": 1622, "loss": 1.4681, "learning_rate": 3.0711638855238455e-06, "epoch": 0.7691833590138675, "percentage": 76.94, "elapsed_time": "4:00:29", "remaining_time": "1:12:04"} +{"current_steps": 1249, "total_steps": 1622, "loss": 1.4111, "learning_rate": 3.055653958625926e-06, "epoch": 0.7697996918335901, "percentage": 77.0, "elapsed_time": "4:00:41", "remaining_time": "1:11:52"} +{"current_steps": 1250, "total_steps": 1622, "loss": 1.4436, "learning_rate": 3.0401762290942517e-06, "epoch": 0.7704160246533128, "percentage": 77.07, "elapsed_time": "4:00:52", "remaining_time": "1:11:41"} +{"current_steps": 1251, "total_steps": 1622, "loss": 1.4606, "learning_rate": 3.0247307686911033e-06, "epoch": 0.7710323574730354, "percentage": 77.13, "elapsed_time": "4:01:17", "remaining_time": "1:11:33"} +{"current_steps": 1252, "total_steps": 1622, "loss": 1.4959, "learning_rate": 3.0093176490291444e-06, "epoch": 0.7716486902927581, "percentage": 77.19, "elapsed_time": "4:01:29", "remaining_time": "1:11:21"} +{"current_steps": 1253, "total_steps": 1622, "loss": 1.5208, "learning_rate": 2.993936941571104e-06, "epoch": 0.7722650231124807, "percentage": 77.25, "elapsed_time": "4:01:40", "remaining_time": "1:11:10"} +{"current_steps": 1254, "total_steps": 1622, "loss": 1.4715, "learning_rate": 2.978588717629416e-06, "epoch": 0.7728813559322034, "percentage": 77.31, "elapsed_time": "4:01:51", "remaining_time": "1:10:58"} +{"current_steps": 1255, "total_steps": 1622, "loss": 1.484, "learning_rate": 2.963273048365918e-06, "epoch": 0.773497688751926, "percentage": 77.37, "elapsed_time": "4:02:02", "remaining_time": "1:10:46"} +{"current_steps": 1256, "total_steps": 1622, "loss": 1.4616, "learning_rate": 2.947990004791501e-06, "epoch": 0.7741140215716487, "percentage": 77.44, "elapsed_time": "4:02:13", "remaining_time": "1:10:35"} +{"current_steps": 1257, "total_steps": 1622, "loss": 1.4837, "learning_rate": 2.932739657765785e-06, "epoch": 0.7747303543913714, "percentage": 77.5, "elapsed_time": "4:02:25", "remaining_time": "1:10:23"} +{"current_steps": 1258, "total_steps": 1622, "loss": 1.4097, "learning_rate": 2.917522077996805e-06, "epoch": 0.775346687211094, "percentage": 77.56, "elapsed_time": "4:02:36", "remaining_time": "1:10:11"} +{"current_steps": 1259, "total_steps": 1622, "loss": 1.5354, "learning_rate": 2.902337336040658e-06, "epoch": 0.7759630200308166, "percentage": 77.62, "elapsed_time": "4:02:47", "remaining_time": "1:10:00"} +{"current_steps": 1260, "total_steps": 1622, "loss": 1.4753, "learning_rate": 2.887185502301193e-06, "epoch": 0.7765793528505393, "percentage": 77.68, "elapsed_time": "4:02:58", "remaining_time": "1:09:48"} +{"current_steps": 1261, "total_steps": 1622, "loss": 1.4786, "learning_rate": 2.8720666470296875e-06, "epoch": 0.777195685670262, "percentage": 77.74, "elapsed_time": "4:03:10", "remaining_time": "1:09:36"} +{"current_steps": 1262, "total_steps": 1622, "loss": 1.458, "learning_rate": 2.8569808403245016e-06, "epoch": 0.7778120184899846, "percentage": 77.81, "elapsed_time": "4:03:21", "remaining_time": "1:09:25"} +{"current_steps": 1263, "total_steps": 1622, "loss": 1.507, "learning_rate": 2.8419281521307805e-06, "epoch": 0.7784283513097072, "percentage": 77.87, "elapsed_time": "4:03:32", "remaining_time": "1:09:13"} +{"current_steps": 1264, "total_steps": 1622, "loss": 1.4705, "learning_rate": 2.8269086522401055e-06, "epoch": 0.7790446841294298, "percentage": 77.93, "elapsed_time": "4:03:43", "remaining_time": "1:09:01"} +{"current_steps": 1265, "total_steps": 1622, "loss": 1.4651, "learning_rate": 2.811922410290181e-06, "epoch": 0.7796610169491526, "percentage": 77.99, "elapsed_time": "4:03:55", "remaining_time": "1:08:50"} +{"current_steps": 1266, "total_steps": 1622, "loss": 1.457, "learning_rate": 2.796969495764521e-06, "epoch": 0.7802773497688752, "percentage": 78.05, "elapsed_time": "4:04:06", "remaining_time": "1:08:38"} +{"current_steps": 1267, "total_steps": 1622, "loss": 1.4512, "learning_rate": 2.7820499779921082e-06, "epoch": 0.7808936825885978, "percentage": 78.11, "elapsed_time": "4:04:17", "remaining_time": "1:08:26"} +{"current_steps": 1268, "total_steps": 1622, "loss": 1.4789, "learning_rate": 2.7671639261470807e-06, "epoch": 0.7815100154083205, "percentage": 78.18, "elapsed_time": "4:04:28", "remaining_time": "1:08:15"} +{"current_steps": 1269, "total_steps": 1622, "loss": 1.4545, "learning_rate": 2.7523114092484217e-06, "epoch": 0.7821263482280432, "percentage": 78.24, "elapsed_time": "4:04:40", "remaining_time": "1:08:03"} +{"current_steps": 1270, "total_steps": 1622, "loss": 1.4656, "learning_rate": 2.737492496159623e-06, "epoch": 0.7827426810477658, "percentage": 78.3, "elapsed_time": "4:04:51", "remaining_time": "1:07:51"} +{"current_steps": 1271, "total_steps": 1622, "loss": 1.4279, "learning_rate": 2.7227072555883694e-06, "epoch": 0.7833590138674884, "percentage": 78.36, "elapsed_time": "4:05:02", "remaining_time": "1:07:40"} +{"current_steps": 1272, "total_steps": 1622, "loss": 1.5288, "learning_rate": 2.7079557560862345e-06, "epoch": 0.7839753466872111, "percentage": 78.42, "elapsed_time": "4:05:13", "remaining_time": "1:07:28"} +{"current_steps": 1273, "total_steps": 1622, "loss": 1.5272, "learning_rate": 2.6932380660483416e-06, "epoch": 0.7845916795069338, "percentage": 78.48, "elapsed_time": "4:05:25", "remaining_time": "1:07:16"} +{"current_steps": 1274, "total_steps": 1622, "loss": 1.4553, "learning_rate": 2.678554253713065e-06, "epoch": 0.7852080123266564, "percentage": 78.55, "elapsed_time": "4:05:36", "remaining_time": "1:07:05"} +{"current_steps": 1275, "total_steps": 1622, "loss": 1.4979, "learning_rate": 2.6639043871616956e-06, "epoch": 0.785824345146379, "percentage": 78.61, "elapsed_time": "4:05:47", "remaining_time": "1:06:53"} +{"current_steps": 1276, "total_steps": 1622, "loss": 1.4663, "learning_rate": 2.649288534318147e-06, "epoch": 0.7864406779661017, "percentage": 78.67, "elapsed_time": "4:05:58", "remaining_time": "1:06:42"} +{"current_steps": 1277, "total_steps": 1622, "loss": 1.4339, "learning_rate": 2.634706762948621e-06, "epoch": 0.7870570107858244, "percentage": 78.73, "elapsed_time": "4:06:10", "remaining_time": "1:06:30"} +{"current_steps": 1278, "total_steps": 1622, "loss": 1.4947, "learning_rate": 2.620159140661298e-06, "epoch": 0.787673343605547, "percentage": 78.79, "elapsed_time": "4:06:21", "remaining_time": "1:06:18"} +{"current_steps": 1279, "total_steps": 1622, "loss": 1.4713, "learning_rate": 2.605645734906039e-06, "epoch": 0.7882896764252696, "percentage": 78.85, "elapsed_time": "4:06:32", "remaining_time": "1:06:07"} +{"current_steps": 1280, "total_steps": 1622, "loss": 1.521, "learning_rate": 2.5911666129740496e-06, "epoch": 0.7889060092449923, "percentage": 78.91, "elapsed_time": "4:06:43", "remaining_time": "1:05:55"} +{"current_steps": 1281, "total_steps": 1622, "loss": 1.4537, "learning_rate": 2.576721841997578e-06, "epoch": 0.7895223420647149, "percentage": 78.98, "elapsed_time": "4:06:55", "remaining_time": "1:05:43"} +{"current_steps": 1282, "total_steps": 1622, "loss": 1.4802, "learning_rate": 2.562311488949617e-06, "epoch": 0.7901386748844376, "percentage": 79.04, "elapsed_time": "4:07:06", "remaining_time": "1:05:32"} +{"current_steps": 1283, "total_steps": 1622, "loss": 1.4934, "learning_rate": 2.547935620643568e-06, "epoch": 0.7907550077041603, "percentage": 79.1, "elapsed_time": "4:07:17", "remaining_time": "1:05:20"} +{"current_steps": 1284, "total_steps": 1622, "loss": 1.4159, "learning_rate": 2.533594303732948e-06, "epoch": 0.7913713405238829, "percentage": 79.16, "elapsed_time": "4:07:29", "remaining_time": "1:05:08"} +{"current_steps": 1285, "total_steps": 1622, "loss": 1.4518, "learning_rate": 2.5192876047110826e-06, "epoch": 0.7919876733436055, "percentage": 79.22, "elapsed_time": "4:07:40", "remaining_time": "1:04:57"} +{"current_steps": 1286, "total_steps": 1622, "loss": 1.4877, "learning_rate": 2.5050155899107877e-06, "epoch": 0.7926040061633282, "percentage": 79.28, "elapsed_time": "4:07:51", "remaining_time": "1:04:45"} +{"current_steps": 1287, "total_steps": 1622, "loss": 1.5197, "learning_rate": 2.490778325504061e-06, "epoch": 0.7932203389830509, "percentage": 79.35, "elapsed_time": "4:08:02", "remaining_time": "1:04:33"} +{"current_steps": 1288, "total_steps": 1622, "loss": 1.5215, "learning_rate": 2.476575877501789e-06, "epoch": 0.7938366718027735, "percentage": 79.41, "elapsed_time": "4:08:14", "remaining_time": "1:04:22"} +{"current_steps": 1289, "total_steps": 1622, "loss": 1.4598, "learning_rate": 2.462408311753436e-06, "epoch": 0.7944530046224961, "percentage": 79.47, "elapsed_time": "4:08:25", "remaining_time": "1:04:10"} +{"current_steps": 1290, "total_steps": 1622, "loss": 1.5285, "learning_rate": 2.4482756939467158e-06, "epoch": 0.7950693374422187, "percentage": 79.53, "elapsed_time": "4:08:36", "remaining_time": "1:03:59"} +{"current_steps": 1291, "total_steps": 1622, "loss": 1.4823, "learning_rate": 2.434178089607325e-06, "epoch": 0.7956856702619415, "percentage": 79.59, "elapsed_time": "4:08:47", "remaining_time": "1:03:47"} +{"current_steps": 1292, "total_steps": 1622, "loss": 1.5274, "learning_rate": 2.420115564098623e-06, "epoch": 0.7963020030816641, "percentage": 79.65, "elapsed_time": "4:08:59", "remaining_time": "1:03:35"} +{"current_steps": 1293, "total_steps": 1622, "loss": 1.4307, "learning_rate": 2.4060881826213044e-06, "epoch": 0.7969183359013867, "percentage": 79.72, "elapsed_time": "4:09:10", "remaining_time": "1:03:24"} +{"current_steps": 1294, "total_steps": 1622, "loss": 1.4542, "learning_rate": 2.39209601021314e-06, "epoch": 0.7975346687211095, "percentage": 79.78, "elapsed_time": "4:09:21", "remaining_time": "1:03:12"} +{"current_steps": 1295, "total_steps": 1622, "loss": 1.4572, "learning_rate": 2.3781391117486495e-06, "epoch": 0.7981510015408321, "percentage": 79.84, "elapsed_time": "4:09:32", "remaining_time": "1:03:00"} +{"current_steps": 1296, "total_steps": 1622, "loss": 1.3986, "learning_rate": 2.364217551938802e-06, "epoch": 0.7987673343605547, "percentage": 79.9, "elapsed_time": "4:09:44", "remaining_time": "1:02:49"} +{"current_steps": 1297, "total_steps": 1622, "loss": 1.5136, "learning_rate": 2.350331395330717e-06, "epoch": 0.7993836671802773, "percentage": 79.96, "elapsed_time": "4:09:55", "remaining_time": "1:02:37"} +{"current_steps": 1298, "total_steps": 1622, "loss": 1.5042, "learning_rate": 2.336480706307377e-06, "epoch": 0.8, "percentage": 80.02, "elapsed_time": "4:10:06", "remaining_time": "1:02:25"} +{"current_steps": 1299, "total_steps": 1622, "loss": 1.5134, "learning_rate": 2.3226655490873105e-06, "epoch": 0.8006163328197227, "percentage": 80.09, "elapsed_time": "4:10:17", "remaining_time": "1:02:14"} +{"current_steps": 1300, "total_steps": 1622, "loss": 1.52, "learning_rate": 2.308885987724305e-06, "epoch": 0.8012326656394453, "percentage": 80.15, "elapsed_time": "4:10:29", "remaining_time": "1:02:02"} +{"current_steps": 1301, "total_steps": 1622, "loss": 1.5034, "learning_rate": 2.295142086107114e-06, "epoch": 0.8018489984591679, "percentage": 80.21, "elapsed_time": "4:10:54", "remaining_time": "1:01:54"} +{"current_steps": 1302, "total_steps": 1622, "loss": 1.5154, "learning_rate": 2.2814339079591498e-06, "epoch": 0.8024653312788906, "percentage": 80.27, "elapsed_time": "4:11:06", "remaining_time": "1:01:42"} +{"current_steps": 1303, "total_steps": 1622, "loss": 1.4592, "learning_rate": 2.2677615168381906e-06, "epoch": 0.8030816640986133, "percentage": 80.33, "elapsed_time": "4:11:17", "remaining_time": "1:01:31"} +{"current_steps": 1304, "total_steps": 1622, "loss": 1.5191, "learning_rate": 2.254124976136097e-06, "epoch": 0.8036979969183359, "percentage": 80.39, "elapsed_time": "4:11:28", "remaining_time": "1:01:19"} +{"current_steps": 1305, "total_steps": 1622, "loss": 1.4237, "learning_rate": 2.2405243490785057e-06, "epoch": 0.8043143297380585, "percentage": 80.46, "elapsed_time": "4:11:39", "remaining_time": "1:01:07"} +{"current_steps": 1306, "total_steps": 1622, "loss": 1.4684, "learning_rate": 2.2269596987245335e-06, "epoch": 0.8049306625577812, "percentage": 80.52, "elapsed_time": "4:11:51", "remaining_time": "1:00:56"} +{"current_steps": 1307, "total_steps": 1622, "loss": 1.4418, "learning_rate": 2.213431087966501e-06, "epoch": 0.8055469953775038, "percentage": 80.58, "elapsed_time": "4:12:02", "remaining_time": "1:00:44"} +{"current_steps": 1308, "total_steps": 1622, "loss": 1.422, "learning_rate": 2.1999385795296346e-06, "epoch": 0.8061633281972265, "percentage": 80.64, "elapsed_time": "4:12:13", "remaining_time": "1:00:32"} +{"current_steps": 1309, "total_steps": 1622, "loss": 1.5047, "learning_rate": 2.186482235971756e-06, "epoch": 0.8067796610169492, "percentage": 80.7, "elapsed_time": "4:12:24", "remaining_time": "1:00:21"} +{"current_steps": 1310, "total_steps": 1622, "loss": 1.4749, "learning_rate": 2.173062119683026e-06, "epoch": 0.8073959938366718, "percentage": 80.76, "elapsed_time": "4:12:36", "remaining_time": "1:00:09"} +{"current_steps": 1311, "total_steps": 1622, "loss": 1.4629, "learning_rate": 2.159678292885635e-06, "epoch": 0.8080123266563944, "percentage": 80.83, "elapsed_time": "4:12:47", "remaining_time": "0:59:58"} +{"current_steps": 1312, "total_steps": 1622, "loss": 1.4405, "learning_rate": 2.1463308176335052e-06, "epoch": 0.8086286594761171, "percentage": 80.89, "elapsed_time": "4:12:58", "remaining_time": "0:59:46"} +{"current_steps": 1313, "total_steps": 1622, "loss": 1.4758, "learning_rate": 2.1330197558120292e-06, "epoch": 0.8092449922958398, "percentage": 80.95, "elapsed_time": "4:13:09", "remaining_time": "0:59:34"} +{"current_steps": 1314, "total_steps": 1622, "loss": 1.4628, "learning_rate": 2.119745169137768e-06, "epoch": 0.8098613251155624, "percentage": 81.01, "elapsed_time": "4:13:21", "remaining_time": "0:59:23"} +{"current_steps": 1315, "total_steps": 1622, "loss": 1.4658, "learning_rate": 2.1065071191581586e-06, "epoch": 0.810477657935285, "percentage": 81.07, "elapsed_time": "4:13:32", "remaining_time": "0:59:11"} +{"current_steps": 1316, "total_steps": 1622, "loss": 1.4865, "learning_rate": 2.0933056672512396e-06, "epoch": 0.8110939907550077, "percentage": 81.13, "elapsed_time": "4:13:43", "remaining_time": "0:58:59"} +{"current_steps": 1317, "total_steps": 1622, "loss": 1.4539, "learning_rate": 2.080140874625367e-06, "epoch": 0.8117103235747304, "percentage": 81.2, "elapsed_time": "4:13:54", "remaining_time": "0:58:48"} +{"current_steps": 1318, "total_steps": 1622, "loss": 1.4648, "learning_rate": 2.067012802318923e-06, "epoch": 0.812326656394453, "percentage": 81.26, "elapsed_time": "4:14:06", "remaining_time": "0:58:36"} +{"current_steps": 1319, "total_steps": 1622, "loss": 1.4114, "learning_rate": 2.053921511200031e-06, "epoch": 0.8129429892141756, "percentage": 81.32, "elapsed_time": "4:14:17", "remaining_time": "0:58:24"} +{"current_steps": 1320, "total_steps": 1622, "loss": 1.4561, "learning_rate": 2.0408670619662927e-06, "epoch": 0.8135593220338984, "percentage": 81.38, "elapsed_time": "4:14:28", "remaining_time": "0:58:13"} +{"current_steps": 1321, "total_steps": 1622, "loss": 1.5071, "learning_rate": 2.027849515144481e-06, "epoch": 0.814175654853621, "percentage": 81.44, "elapsed_time": "4:14:39", "remaining_time": "0:58:01"} +{"current_steps": 1322, "total_steps": 1622, "loss": 1.5276, "learning_rate": 2.0148689310902726e-06, "epoch": 0.8147919876733436, "percentage": 81.5, "elapsed_time": "4:14:51", "remaining_time": "0:57:49"} +{"current_steps": 1323, "total_steps": 1622, "loss": 1.4656, "learning_rate": 2.001925369987976e-06, "epoch": 0.8154083204930662, "percentage": 81.57, "elapsed_time": "4:15:02", "remaining_time": "0:57:38"} +{"current_steps": 1324, "total_steps": 1622, "loss": 1.4327, "learning_rate": 1.9890188918502296e-06, "epoch": 0.816024653312789, "percentage": 81.63, "elapsed_time": "4:15:13", "remaining_time": "0:57:26"} +{"current_steps": 1325, "total_steps": 1622, "loss": 1.438, "learning_rate": 1.9761495565177512e-06, "epoch": 0.8166409861325116, "percentage": 81.69, "elapsed_time": "4:15:24", "remaining_time": "0:57:15"} +{"current_steps": 1326, "total_steps": 1622, "loss": 1.4345, "learning_rate": 1.9633174236590324e-06, "epoch": 0.8172573189522342, "percentage": 81.75, "elapsed_time": "4:15:35", "remaining_time": "0:57:03"} +{"current_steps": 1327, "total_steps": 1622, "loss": 1.5303, "learning_rate": 1.95052255277009e-06, "epoch": 0.8178736517719568, "percentage": 81.81, "elapsed_time": "4:15:47", "remaining_time": "0:56:51"} +{"current_steps": 1328, "total_steps": 1622, "loss": 1.5365, "learning_rate": 1.9377650031741657e-06, "epoch": 0.8184899845916795, "percentage": 81.87, "elapsed_time": "4:15:58", "remaining_time": "0:56:40"} +{"current_steps": 1329, "total_steps": 1622, "loss": 1.4394, "learning_rate": 1.9250448340214634e-06, "epoch": 0.8191063174114022, "percentage": 81.94, "elapsed_time": "4:16:09", "remaining_time": "0:56:28"} +{"current_steps": 1330, "total_steps": 1622, "loss": 1.4642, "learning_rate": 1.912362104288881e-06, "epoch": 0.8197226502311248, "percentage": 82.0, "elapsed_time": "4:16:20", "remaining_time": "0:56:16"} +{"current_steps": 1331, "total_steps": 1622, "loss": 1.4876, "learning_rate": 1.8997168727797167e-06, "epoch": 0.8203389830508474, "percentage": 82.06, "elapsed_time": "4:16:32", "remaining_time": "0:56:05"} +{"current_steps": 1332, "total_steps": 1622, "loss": 1.4847, "learning_rate": 1.8871091981234157e-06, "epoch": 0.8209553158705701, "percentage": 82.12, "elapsed_time": "4:16:43", "remaining_time": "0:55:53"} +{"current_steps": 1333, "total_steps": 1622, "loss": 1.4284, "learning_rate": 1.8745391387752953e-06, "epoch": 0.8215716486902928, "percentage": 82.18, "elapsed_time": "4:16:54", "remaining_time": "0:55:41"} +{"current_steps": 1334, "total_steps": 1622, "loss": 1.398, "learning_rate": 1.8620067530162621e-06, "epoch": 0.8221879815100154, "percentage": 82.24, "elapsed_time": "4:17:05", "remaining_time": "0:55:30"} +{"current_steps": 1335, "total_steps": 1622, "loss": 1.5211, "learning_rate": 1.8495120989525494e-06, "epoch": 0.8228043143297381, "percentage": 82.31, "elapsed_time": "4:17:17", "remaining_time": "0:55:18"} +{"current_steps": 1336, "total_steps": 1622, "loss": 1.4762, "learning_rate": 1.8370552345154568e-06, "epoch": 0.8234206471494607, "percentage": 82.37, "elapsed_time": "4:17:28", "remaining_time": "0:55:07"} +{"current_steps": 1337, "total_steps": 1622, "loss": 1.4219, "learning_rate": 1.8246362174610632e-06, "epoch": 0.8240369799691833, "percentage": 82.43, "elapsed_time": "4:17:40", "remaining_time": "0:54:55"} +{"current_steps": 1338, "total_steps": 1622, "loss": 1.4503, "learning_rate": 1.8122551053699767e-06, "epoch": 0.824653312788906, "percentage": 82.49, "elapsed_time": "4:17:51", "remaining_time": "0:54:43"} +{"current_steps": 1339, "total_steps": 1622, "loss": 1.4952, "learning_rate": 1.7999119556470535e-06, "epoch": 0.8252696456086287, "percentage": 82.55, "elapsed_time": "4:18:02", "remaining_time": "0:54:32"} +{"current_steps": 1340, "total_steps": 1622, "loss": 1.5042, "learning_rate": 1.7876068255211376e-06, "epoch": 0.8258859784283513, "percentage": 82.61, "elapsed_time": "4:18:13", "remaining_time": "0:54:20"} +{"current_steps": 1341, "total_steps": 1622, "loss": 1.4731, "learning_rate": 1.775339772044803e-06, "epoch": 0.8265023112480739, "percentage": 82.68, "elapsed_time": "4:18:25", "remaining_time": "0:54:09"} +{"current_steps": 1342, "total_steps": 1622, "loss": 1.472, "learning_rate": 1.7631108520940733e-06, "epoch": 0.8271186440677966, "percentage": 82.74, "elapsed_time": "4:18:36", "remaining_time": "0:53:57"} +{"current_steps": 1343, "total_steps": 1622, "loss": 1.4494, "learning_rate": 1.7509201223681681e-06, "epoch": 0.8277349768875193, "percentage": 82.8, "elapsed_time": "4:18:47", "remaining_time": "0:53:45"} +{"current_steps": 1344, "total_steps": 1622, "loss": 1.5503, "learning_rate": 1.7387676393892472e-06, "epoch": 0.8283513097072419, "percentage": 82.86, "elapsed_time": "4:18:58", "remaining_time": "0:53:34"} +{"current_steps": 1345, "total_steps": 1622, "loss": 1.4334, "learning_rate": 1.7266534595021279e-06, "epoch": 0.8289676425269645, "percentage": 82.92, "elapsed_time": "4:19:10", "remaining_time": "0:53:22"} +{"current_steps": 1346, "total_steps": 1622, "loss": 1.47, "learning_rate": 1.7145776388740387e-06, "epoch": 0.8295839753466873, "percentage": 82.98, "elapsed_time": "4:19:21", "remaining_time": "0:53:10"} +{"current_steps": 1347, "total_steps": 1622, "loss": 1.5028, "learning_rate": 1.7025402334943652e-06, "epoch": 0.8302003081664099, "percentage": 83.05, "elapsed_time": "4:19:32", "remaining_time": "0:52:59"} +{"current_steps": 1348, "total_steps": 1622, "loss": 1.4128, "learning_rate": 1.6905412991743674e-06, "epoch": 0.8308166409861325, "percentage": 83.11, "elapsed_time": "4:19:43", "remaining_time": "0:52:47"} +{"current_steps": 1349, "total_steps": 1622, "loss": 1.4853, "learning_rate": 1.6785808915469482e-06, "epoch": 0.8314329738058551, "percentage": 83.17, "elapsed_time": "4:19:55", "remaining_time": "0:52:36"} +{"current_steps": 1350, "total_steps": 1622, "loss": 1.5206, "learning_rate": 1.6666590660663684e-06, "epoch": 0.8320493066255779, "percentage": 83.23, "elapsed_time": "4:20:06", "remaining_time": "0:52:24"} +{"current_steps": 1351, "total_steps": 1622, "loss": 1.486, "learning_rate": 1.6547758780080159e-06, "epoch": 0.8326656394453005, "percentage": 83.29, "elapsed_time": "4:20:31", "remaining_time": "0:52:15"} +{"current_steps": 1352, "total_steps": 1622, "loss": 1.5057, "learning_rate": 1.6429313824681292e-06, "epoch": 0.8332819722650231, "percentage": 83.35, "elapsed_time": "4:20:42", "remaining_time": "0:52:03"} +{"current_steps": 1353, "total_steps": 1622, "loss": 1.4927, "learning_rate": 1.6311256343635484e-06, "epoch": 0.8338983050847457, "percentage": 83.42, "elapsed_time": "4:20:53", "remaining_time": "0:51:52"} +{"current_steps": 1354, "total_steps": 1622, "loss": 1.4556, "learning_rate": 1.6193586884314694e-06, "epoch": 0.8345146379044684, "percentage": 83.48, "elapsed_time": "4:21:05", "remaining_time": "0:51:40"} +{"current_steps": 1355, "total_steps": 1622, "loss": 1.4079, "learning_rate": 1.607630599229174e-06, "epoch": 0.8351309707241911, "percentage": 83.54, "elapsed_time": "4:21:16", "remaining_time": "0:51:29"} +{"current_steps": 1356, "total_steps": 1622, "loss": 1.4641, "learning_rate": 1.5959414211337876e-06, "epoch": 0.8357473035439137, "percentage": 83.6, "elapsed_time": "4:21:27", "remaining_time": "0:51:17"} +{"current_steps": 1357, "total_steps": 1622, "loss": 1.5024, "learning_rate": 1.5842912083420303e-06, "epoch": 0.8363636363636363, "percentage": 83.66, "elapsed_time": "4:21:38", "remaining_time": "0:51:05"} +{"current_steps": 1358, "total_steps": 1622, "loss": 1.447, "learning_rate": 1.5726800148699527e-06, "epoch": 0.836979969183359, "percentage": 83.72, "elapsed_time": "4:21:50", "remaining_time": "0:50:54"} +{"current_steps": 1359, "total_steps": 1622, "loss": 1.5101, "learning_rate": 1.5611078945526947e-06, "epoch": 0.8375963020030817, "percentage": 83.79, "elapsed_time": "4:22:01", "remaining_time": "0:50:42"} +{"current_steps": 1360, "total_steps": 1622, "loss": 1.5185, "learning_rate": 1.5495749010442395e-06, "epoch": 0.8382126348228043, "percentage": 83.85, "elapsed_time": "4:22:12", "remaining_time": "0:50:30"} +{"current_steps": 1361, "total_steps": 1622, "loss": 1.4618, "learning_rate": 1.5380810878171516e-06, "epoch": 0.838828967642527, "percentage": 83.91, "elapsed_time": "4:22:24", "remaining_time": "0:50:19"} +{"current_steps": 1362, "total_steps": 1622, "loss": 1.4285, "learning_rate": 1.52662650816234e-06, "epoch": 0.8394453004622496, "percentage": 83.97, "elapsed_time": "4:22:35", "remaining_time": "0:50:07"} +{"current_steps": 1363, "total_steps": 1622, "loss": 1.4961, "learning_rate": 1.5152112151888077e-06, "epoch": 0.8400616332819723, "percentage": 84.03, "elapsed_time": "4:22:46", "remaining_time": "0:49:55"} +{"current_steps": 1364, "total_steps": 1622, "loss": 1.4811, "learning_rate": 1.503835261823413e-06, "epoch": 0.8406779661016949, "percentage": 84.09, "elapsed_time": "4:22:57", "remaining_time": "0:49:44"} +{"current_steps": 1365, "total_steps": 1622, "loss": 1.4027, "learning_rate": 1.4924987008105972e-06, "epoch": 0.8412942989214176, "percentage": 84.16, "elapsed_time": "4:23:09", "remaining_time": "0:49:32"} +{"current_steps": 1366, "total_steps": 1622, "loss": 1.3994, "learning_rate": 1.4812015847121797e-06, "epoch": 0.8419106317411402, "percentage": 84.22, "elapsed_time": "4:23:20", "remaining_time": "0:49:21"} +{"current_steps": 1367, "total_steps": 1622, "loss": 1.4907, "learning_rate": 1.4699439659070857e-06, "epoch": 0.8425269645608628, "percentage": 84.28, "elapsed_time": "4:23:31", "remaining_time": "0:49:09"} +{"current_steps": 1368, "total_steps": 1622, "loss": 1.5374, "learning_rate": 1.458725896591111e-06, "epoch": 0.8431432973805855, "percentage": 84.34, "elapsed_time": "4:23:42", "remaining_time": "0:48:57"} +{"current_steps": 1369, "total_steps": 1622, "loss": 1.4238, "learning_rate": 1.4475474287766799e-06, "epoch": 0.8437596302003082, "percentage": 84.4, "elapsed_time": "4:23:54", "remaining_time": "0:48:46"} +{"current_steps": 1370, "total_steps": 1622, "loss": 1.4528, "learning_rate": 1.4364086142926093e-06, "epoch": 0.8443759630200308, "percentage": 84.46, "elapsed_time": "4:24:05", "remaining_time": "0:48:34"} +{"current_steps": 1371, "total_steps": 1622, "loss": 1.5402, "learning_rate": 1.4253095047838618e-06, "epoch": 0.8449922958397534, "percentage": 84.53, "elapsed_time": "4:24:16", "remaining_time": "0:48:23"} +{"current_steps": 1372, "total_steps": 1622, "loss": 1.4584, "learning_rate": 1.4142501517113049e-06, "epoch": 0.8456086286594762, "percentage": 84.59, "elapsed_time": "4:24:27", "remaining_time": "0:48:11"} +{"current_steps": 1373, "total_steps": 1622, "loss": 1.4864, "learning_rate": 1.4032306063514833e-06, "epoch": 0.8462249614791988, "percentage": 84.65, "elapsed_time": "4:24:39", "remaining_time": "0:47:59"} +{"current_steps": 1374, "total_steps": 1622, "loss": 1.484, "learning_rate": 1.3922509197963674e-06, "epoch": 0.8468412942989214, "percentage": 84.71, "elapsed_time": "4:24:50", "remaining_time": "0:47:48"} +{"current_steps": 1375, "total_steps": 1622, "loss": 1.4694, "learning_rate": 1.3813111429531234e-06, "epoch": 0.847457627118644, "percentage": 84.77, "elapsed_time": "4:25:01", "remaining_time": "0:47:36"} +{"current_steps": 1376, "total_steps": 1622, "loss": 1.463, "learning_rate": 1.3704113265438822e-06, "epoch": 0.8480739599383668, "percentage": 84.83, "elapsed_time": "4:25:12", "remaining_time": "0:47:24"} +{"current_steps": 1377, "total_steps": 1622, "loss": 1.4389, "learning_rate": 1.3595515211054921e-06, "epoch": 0.8486902927580894, "percentage": 84.9, "elapsed_time": "4:25:24", "remaining_time": "0:47:13"} +{"current_steps": 1378, "total_steps": 1622, "loss": 1.4911, "learning_rate": 1.3487317769892927e-06, "epoch": 0.849306625577812, "percentage": 84.96, "elapsed_time": "4:25:35", "remaining_time": "0:47:01"} +{"current_steps": 1379, "total_steps": 1622, "loss": 1.4308, "learning_rate": 1.3379521443608822e-06, "epoch": 0.8499229583975346, "percentage": 85.02, "elapsed_time": "4:25:46", "remaining_time": "0:46:50"} +{"current_steps": 1380, "total_steps": 1622, "loss": 1.4893, "learning_rate": 1.3272126731998857e-06, "epoch": 0.8505392912172574, "percentage": 85.08, "elapsed_time": "4:25:57", "remaining_time": "0:46:38"} +{"current_steps": 1381, "total_steps": 1622, "loss": 1.4825, "learning_rate": 1.316513413299706e-06, "epoch": 0.85115562403698, "percentage": 85.14, "elapsed_time": "4:26:09", "remaining_time": "0:46:26"} +{"current_steps": 1382, "total_steps": 1622, "loss": 1.4574, "learning_rate": 1.3058544142673235e-06, "epoch": 0.8517719568567026, "percentage": 85.2, "elapsed_time": "4:26:20", "remaining_time": "0:46:15"} +{"current_steps": 1383, "total_steps": 1622, "loss": 1.4618, "learning_rate": 1.2952357255230441e-06, "epoch": 0.8523882896764252, "percentage": 85.27, "elapsed_time": "4:26:31", "remaining_time": "0:46:03"} +{"current_steps": 1384, "total_steps": 1622, "loss": 1.4848, "learning_rate": 1.2846573963002662e-06, "epoch": 0.853004622496148, "percentage": 85.33, "elapsed_time": "4:26:42", "remaining_time": "0:45:51"} +{"current_steps": 1385, "total_steps": 1622, "loss": 1.5298, "learning_rate": 1.2741194756452757e-06, "epoch": 0.8536209553158706, "percentage": 85.39, "elapsed_time": "4:26:54", "remaining_time": "0:45:40"} +{"current_steps": 1386, "total_steps": 1622, "loss": 1.5198, "learning_rate": 1.2636220124170008e-06, "epoch": 0.8542372881355932, "percentage": 85.45, "elapsed_time": "4:27:05", "remaining_time": "0:45:28"} +{"current_steps": 1387, "total_steps": 1622, "loss": 1.5216, "learning_rate": 1.2531650552867803e-06, "epoch": 0.8548536209553159, "percentage": 85.51, "elapsed_time": "4:27:16", "remaining_time": "0:45:17"} +{"current_steps": 1388, "total_steps": 1622, "loss": 1.4888, "learning_rate": 1.2427486527381582e-06, "epoch": 0.8554699537750385, "percentage": 85.57, "elapsed_time": "4:27:27", "remaining_time": "0:45:05"} +{"current_steps": 1389, "total_steps": 1622, "loss": 1.4236, "learning_rate": 1.2323728530666458e-06, "epoch": 0.8560862865947612, "percentage": 85.64, "elapsed_time": "4:27:40", "remaining_time": "0:44:54"} +{"current_steps": 1390, "total_steps": 1622, "loss": 1.4905, "learning_rate": 1.222037704379495e-06, "epoch": 0.8567026194144838, "percentage": 85.7, "elapsed_time": "4:27:51", "remaining_time": "0:44:42"} +{"current_steps": 1391, "total_steps": 1622, "loss": 1.4239, "learning_rate": 1.211743254595481e-06, "epoch": 0.8573189522342065, "percentage": 85.76, "elapsed_time": "4:28:02", "remaining_time": "0:44:30"} +{"current_steps": 1392, "total_steps": 1622, "loss": 1.49, "learning_rate": 1.2014895514446844e-06, "epoch": 0.8579352850539291, "percentage": 85.82, "elapsed_time": "4:28:13", "remaining_time": "0:44:19"} +{"current_steps": 1393, "total_steps": 1622, "loss": 1.5024, "learning_rate": 1.1912766424682588e-06, "epoch": 0.8585516178736518, "percentage": 85.88, "elapsed_time": "4:28:25", "remaining_time": "0:44:07"} +{"current_steps": 1394, "total_steps": 1622, "loss": 1.4582, "learning_rate": 1.181104575018216e-06, "epoch": 0.8591679506933744, "percentage": 85.94, "elapsed_time": "4:28:36", "remaining_time": "0:43:55"} +{"current_steps": 1395, "total_steps": 1622, "loss": 1.417, "learning_rate": 1.1709733962572123e-06, "epoch": 0.8597842835130971, "percentage": 86.0, "elapsed_time": "4:28:47", "remaining_time": "0:43:44"} +{"current_steps": 1396, "total_steps": 1622, "loss": 1.4183, "learning_rate": 1.1608831531583197e-06, "epoch": 0.8604006163328197, "percentage": 86.07, "elapsed_time": "4:28:58", "remaining_time": "0:43:32"} +{"current_steps": 1397, "total_steps": 1622, "loss": 1.4972, "learning_rate": 1.1508338925048113e-06, "epoch": 0.8610169491525423, "percentage": 86.13, "elapsed_time": "4:29:10", "remaining_time": "0:43:21"} +{"current_steps": 1398, "total_steps": 1622, "loss": 1.4489, "learning_rate": 1.1408256608899515e-06, "epoch": 0.8616332819722651, "percentage": 86.19, "elapsed_time": "4:29:21", "remaining_time": "0:43:09"} +{"current_steps": 1399, "total_steps": 1622, "loss": 1.482, "learning_rate": 1.1308585047167687e-06, "epoch": 0.8622496147919877, "percentage": 86.25, "elapsed_time": "4:29:32", "remaining_time": "0:42:57"} +{"current_steps": 1400, "total_steps": 1622, "loss": 1.4354, "learning_rate": 1.1209324701978453e-06, "epoch": 0.8628659476117103, "percentage": 86.31, "elapsed_time": "4:29:43", "remaining_time": "0:42:46"} +{"current_steps": 1401, "total_steps": 1622, "loss": 1.4076, "learning_rate": 1.1110476033551076e-06, "epoch": 0.8634822804314329, "percentage": 86.37, "elapsed_time": "4:30:09", "remaining_time": "0:42:36"} +{"current_steps": 1402, "total_steps": 1622, "loss": 1.4665, "learning_rate": 1.101203950019608e-06, "epoch": 0.8640986132511557, "percentage": 86.44, "elapsed_time": "4:30:20", "remaining_time": "0:42:25"} +{"current_steps": 1403, "total_steps": 1622, "loss": 1.4939, "learning_rate": 1.0914015558313106e-06, "epoch": 0.8647149460708783, "percentage": 86.5, "elapsed_time": "4:30:32", "remaining_time": "0:42:13"} +{"current_steps": 1404, "total_steps": 1622, "loss": 1.478, "learning_rate": 1.0816404662388813e-06, "epoch": 0.8653312788906009, "percentage": 86.56, "elapsed_time": "4:30:43", "remaining_time": "0:42:02"} +{"current_steps": 1405, "total_steps": 1622, "loss": 1.4763, "learning_rate": 1.0719207264994825e-06, "epoch": 0.8659476117103235, "percentage": 86.62, "elapsed_time": "4:30:54", "remaining_time": "0:41:50"} +{"current_steps": 1406, "total_steps": 1622, "loss": 1.4718, "learning_rate": 1.0622423816785544e-06, "epoch": 0.8665639445300463, "percentage": 86.68, "elapsed_time": "4:31:05", "remaining_time": "0:41:38"} +{"current_steps": 1407, "total_steps": 1622, "loss": 1.5462, "learning_rate": 1.0526054766496097e-06, "epoch": 0.8671802773497689, "percentage": 86.74, "elapsed_time": "4:31:17", "remaining_time": "0:41:27"} +{"current_steps": 1408, "total_steps": 1622, "loss": 1.4705, "learning_rate": 1.0430100560940326e-06, "epoch": 0.8677966101694915, "percentage": 86.81, "elapsed_time": "4:31:28", "remaining_time": "0:41:15"} +{"current_steps": 1409, "total_steps": 1622, "loss": 1.5066, "learning_rate": 1.0334561645008556e-06, "epoch": 0.8684129429892141, "percentage": 86.87, "elapsed_time": "4:31:39", "remaining_time": "0:41:04"} +{"current_steps": 1410, "total_steps": 1622, "loss": 1.4634, "learning_rate": 1.0239438461665685e-06, "epoch": 0.8690292758089369, "percentage": 86.93, "elapsed_time": "4:31:51", "remaining_time": "0:40:52"} +{"current_steps": 1411, "total_steps": 1622, "loss": 1.3995, "learning_rate": 1.0144731451949085e-06, "epoch": 0.8696456086286595, "percentage": 86.99, "elapsed_time": "4:32:02", "remaining_time": "0:40:40"} +{"current_steps": 1412, "total_steps": 1622, "loss": 1.4971, "learning_rate": 1.005044105496652e-06, "epoch": 0.8702619414483821, "percentage": 87.05, "elapsed_time": "4:32:13", "remaining_time": "0:40:29"} +{"current_steps": 1413, "total_steps": 1622, "loss": 1.4803, "learning_rate": 9.956567707894094e-07, "epoch": 0.8708782742681048, "percentage": 87.11, "elapsed_time": "4:32:24", "remaining_time": "0:40:17"} +{"current_steps": 1414, "total_steps": 1622, "loss": 1.4413, "learning_rate": 9.86311184597436e-07, "epoch": 0.8714946070878274, "percentage": 87.18, "elapsed_time": "4:32:36", "remaining_time": "0:40:05"} +{"current_steps": 1415, "total_steps": 1622, "loss": 1.4812, "learning_rate": 9.77007390251411e-07, "epoch": 0.8721109399075501, "percentage": 87.24, "elapsed_time": "4:32:47", "remaining_time": "0:39:54"} +{"current_steps": 1416, "total_steps": 1622, "loss": 1.4595, "learning_rate": 9.67745430888256e-07, "epoch": 0.8727272727272727, "percentage": 87.3, "elapsed_time": "4:32:58", "remaining_time": "0:39:42"} +{"current_steps": 1417, "total_steps": 1622, "loss": 1.479, "learning_rate": 9.58525349450916e-07, "epoch": 0.8733436055469954, "percentage": 87.36, "elapsed_time": "4:33:09", "remaining_time": "0:39:31"} +{"current_steps": 1418, "total_steps": 1622, "loss": 1.4712, "learning_rate": 9.493471886881723e-07, "epoch": 0.873959938366718, "percentage": 87.42, "elapsed_time": "4:33:21", "remaining_time": "0:39:19"} +{"current_steps": 1419, "total_steps": 1622, "loss": 1.4995, "learning_rate": 9.402109911544477e-07, "epoch": 0.8745762711864407, "percentage": 87.48, "elapsed_time": "4:33:32", "remaining_time": "0:39:07"} +{"current_steps": 1420, "total_steps": 1622, "loss": 1.4777, "learning_rate": 9.311167992095938e-07, "epoch": 0.8751926040061633, "percentage": 87.55, "elapsed_time": "4:33:43", "remaining_time": "0:38:56"} +{"current_steps": 1421, "total_steps": 1622, "loss": 1.4765, "learning_rate": 9.220646550187107e-07, "epoch": 0.875808936825886, "percentage": 87.61, "elapsed_time": "4:33:54", "remaining_time": "0:38:44"} +{"current_steps": 1422, "total_steps": 1622, "loss": 1.5066, "learning_rate": 9.130546005519425e-07, "epoch": 0.8764252696456086, "percentage": 87.67, "elapsed_time": "4:34:06", "remaining_time": "0:38:33"} +{"current_steps": 1423, "total_steps": 1622, "loss": 1.4372, "learning_rate": 9.040866775842805e-07, "epoch": 0.8770416024653312, "percentage": 87.73, "elapsed_time": "4:34:17", "remaining_time": "0:38:21"} +{"current_steps": 1424, "total_steps": 1622, "loss": 1.4217, "learning_rate": 8.951609276953832e-07, "epoch": 0.877657935285054, "percentage": 87.79, "elapsed_time": "4:34:28", "remaining_time": "0:38:09"} +{"current_steps": 1425, "total_steps": 1622, "loss": 1.4711, "learning_rate": 8.862773922693668e-07, "epoch": 0.8782742681047766, "percentage": 87.85, "elapsed_time": "4:34:39", "remaining_time": "0:37:58"} +{"current_steps": 1426, "total_steps": 1622, "loss": 1.5053, "learning_rate": 8.774361124946206e-07, "epoch": 0.8788906009244992, "percentage": 87.92, "elapsed_time": "4:34:51", "remaining_time": "0:37:46"} +{"current_steps": 1427, "total_steps": 1622, "loss": 1.4417, "learning_rate": 8.68637129363622e-07, "epoch": 0.8795069337442218, "percentage": 87.98, "elapsed_time": "4:35:02", "remaining_time": "0:37:35"} +{"current_steps": 1428, "total_steps": 1622, "loss": 1.4769, "learning_rate": 8.598804836727326e-07, "epoch": 0.8801232665639446, "percentage": 88.04, "elapsed_time": "4:35:13", "remaining_time": "0:37:23"} +{"current_steps": 1429, "total_steps": 1622, "loss": 1.4749, "learning_rate": 8.511662160220268e-07, "epoch": 0.8807395993836672, "percentage": 88.1, "elapsed_time": "4:35:24", "remaining_time": "0:37:11"} +{"current_steps": 1430, "total_steps": 1622, "loss": 1.4045, "learning_rate": 8.424943668150864e-07, "epoch": 0.8813559322033898, "percentage": 88.16, "elapsed_time": "4:35:35", "remaining_time": "0:37:00"} +{"current_steps": 1431, "total_steps": 1622, "loss": 1.4855, "learning_rate": 8.338649762588192e-07, "epoch": 0.8819722650231124, "percentage": 88.22, "elapsed_time": "4:35:47", "remaining_time": "0:36:48"} +{"current_steps": 1432, "total_steps": 1622, "loss": 1.4246, "learning_rate": 8.252780843632813e-07, "epoch": 0.8825885978428352, "percentage": 88.29, "elapsed_time": "4:35:58", "remaining_time": "0:36:37"} +{"current_steps": 1433, "total_steps": 1622, "loss": 1.5024, "learning_rate": 8.167337309414802e-07, "epoch": 0.8832049306625578, "percentage": 88.35, "elapsed_time": "4:36:09", "remaining_time": "0:36:25"} +{"current_steps": 1434, "total_steps": 1622, "loss": 1.4909, "learning_rate": 8.082319556091922e-07, "epoch": 0.8838212634822804, "percentage": 88.41, "elapsed_time": "4:36:20", "remaining_time": "0:36:13"} +{"current_steps": 1435, "total_steps": 1622, "loss": 1.4387, "learning_rate": 7.997727977847869e-07, "epoch": 0.884437596302003, "percentage": 88.47, "elapsed_time": "4:36:32", "remaining_time": "0:36:02"} +{"current_steps": 1436, "total_steps": 1622, "loss": 1.4072, "learning_rate": 7.913562966890332e-07, "epoch": 0.8850539291217258, "percentage": 88.53, "elapsed_time": "4:36:43", "remaining_time": "0:35:50"} +{"current_steps": 1437, "total_steps": 1622, "loss": 1.4547, "learning_rate": 7.829824913449213e-07, "epoch": 0.8856702619414484, "percentage": 88.59, "elapsed_time": "4:36:55", "remaining_time": "0:35:39"} +{"current_steps": 1438, "total_steps": 1622, "loss": 1.4901, "learning_rate": 7.746514205774913e-07, "epoch": 0.886286594761171, "percentage": 88.66, "elapsed_time": "4:37:06", "remaining_time": "0:35:27"} +{"current_steps": 1439, "total_steps": 1622, "loss": 1.4914, "learning_rate": 7.663631230136371e-07, "epoch": 0.8869029275808937, "percentage": 88.72, "elapsed_time": "4:37:17", "remaining_time": "0:35:15"} +{"current_steps": 1440, "total_steps": 1622, "loss": 1.4761, "learning_rate": 7.581176370819365e-07, "epoch": 0.8875192604006163, "percentage": 88.78, "elapsed_time": "4:37:28", "remaining_time": "0:35:04"} +{"current_steps": 1441, "total_steps": 1622, "loss": 1.483, "learning_rate": 7.499150010124745e-07, "epoch": 0.888135593220339, "percentage": 88.84, "elapsed_time": "4:37:40", "remaining_time": "0:34:52"} +{"current_steps": 1442, "total_steps": 1622, "loss": 1.5003, "learning_rate": 7.417552528366644e-07, "epoch": 0.8887519260400616, "percentage": 88.9, "elapsed_time": "4:37:51", "remaining_time": "0:34:41"} +{"current_steps": 1443, "total_steps": 1622, "loss": 1.4687, "learning_rate": 7.33638430387067e-07, "epoch": 0.8893682588597843, "percentage": 88.96, "elapsed_time": "4:38:02", "remaining_time": "0:34:29"} +{"current_steps": 1444, "total_steps": 1622, "loss": 1.4682, "learning_rate": 7.255645712972148e-07, "epoch": 0.8899845916795069, "percentage": 89.03, "elapsed_time": "4:38:13", "remaining_time": "0:34:17"} +{"current_steps": 1445, "total_steps": 1622, "loss": 1.4498, "learning_rate": 7.175337130014526e-07, "epoch": 0.8906009244992296, "percentage": 89.09, "elapsed_time": "4:38:25", "remaining_time": "0:34:06"} +{"current_steps": 1446, "total_steps": 1622, "loss": 1.446, "learning_rate": 7.095458927347431e-07, "epoch": 0.8912172573189522, "percentage": 89.15, "elapsed_time": "4:38:36", "remaining_time": "0:33:54"} +{"current_steps": 1447, "total_steps": 1622, "loss": 1.453, "learning_rate": 7.016011475325046e-07, "epoch": 0.8918335901386749, "percentage": 89.21, "elapsed_time": "4:38:47", "remaining_time": "0:33:43"} +{"current_steps": 1448, "total_steps": 1622, "loss": 1.4624, "learning_rate": 6.936995142304436e-07, "epoch": 0.8924499229583975, "percentage": 89.27, "elapsed_time": "4:38:58", "remaining_time": "0:33:31"} +{"current_steps": 1449, "total_steps": 1622, "loss": 1.4775, "learning_rate": 6.858410294643758e-07, "epoch": 0.8930662557781202, "percentage": 89.33, "elapsed_time": "4:39:10", "remaining_time": "0:33:19"} +{"current_steps": 1450, "total_steps": 1622, "loss": 1.5179, "learning_rate": 6.780257296700554e-07, "epoch": 0.8936825885978429, "percentage": 89.4, "elapsed_time": "4:39:21", "remaining_time": "0:33:08"} +{"current_steps": 1451, "total_steps": 1622, "loss": 1.4955, "learning_rate": 6.702536510830171e-07, "epoch": 0.8942989214175655, "percentage": 89.46, "elapsed_time": "4:39:47", "remaining_time": "0:32:58"} +{"current_steps": 1452, "total_steps": 1622, "loss": 1.5379, "learning_rate": 6.625248297384002e-07, "epoch": 0.8949152542372881, "percentage": 89.52, "elapsed_time": "4:39:58", "remaining_time": "0:32:46"} +{"current_steps": 1453, "total_steps": 1622, "loss": 1.4653, "learning_rate": 6.548393014707732e-07, "epoch": 0.8955315870570107, "percentage": 89.58, "elapsed_time": "4:40:09", "remaining_time": "0:32:35"} +{"current_steps": 1454, "total_steps": 1622, "loss": 1.4619, "learning_rate": 6.471971019139889e-07, "epoch": 0.8961479198767335, "percentage": 89.64, "elapsed_time": "4:40:20", "remaining_time": "0:32:23"} +{"current_steps": 1455, "total_steps": 1622, "loss": 1.4457, "learning_rate": 6.395982665010036e-07, "epoch": 0.8967642526964561, "percentage": 89.7, "elapsed_time": "4:40:32", "remaining_time": "0:32:11"} +{"current_steps": 1456, "total_steps": 1622, "loss": 1.4688, "learning_rate": 6.320428304637083e-07, "epoch": 0.8973805855161787, "percentage": 89.77, "elapsed_time": "4:40:43", "remaining_time": "0:32:00"} +{"current_steps": 1457, "total_steps": 1622, "loss": 1.5175, "learning_rate": 6.245308288327823e-07, "epoch": 0.8979969183359013, "percentage": 89.83, "elapsed_time": "4:40:54", "remaining_time": "0:31:48"} +{"current_steps": 1458, "total_steps": 1622, "loss": 1.4793, "learning_rate": 6.170622964375239e-07, "epoch": 0.8986132511556241, "percentage": 89.89, "elapsed_time": "4:41:05", "remaining_time": "0:31:37"} +{"current_steps": 1459, "total_steps": 1622, "loss": 1.5012, "learning_rate": 6.096372679056761e-07, "epoch": 0.8992295839753467, "percentage": 89.95, "elapsed_time": "4:41:17", "remaining_time": "0:31:25"} +{"current_steps": 1460, "total_steps": 1622, "loss": 1.4357, "learning_rate": 6.022557776632842e-07, "epoch": 0.8998459167950693, "percentage": 90.01, "elapsed_time": "4:41:28", "remaining_time": "0:31:13"} +{"current_steps": 1461, "total_steps": 1622, "loss": 1.4228, "learning_rate": 5.949178599345307e-07, "epoch": 0.900462249614792, "percentage": 90.07, "elapsed_time": "4:41:39", "remaining_time": "0:31:02"} +{"current_steps": 1462, "total_steps": 1622, "loss": 1.4889, "learning_rate": 5.876235487415694e-07, "epoch": 0.9010785824345147, "percentage": 90.14, "elapsed_time": "4:41:50", "remaining_time": "0:30:50"} +{"current_steps": 1463, "total_steps": 1622, "loss": 1.5356, "learning_rate": 5.803728779043738e-07, "epoch": 0.9016949152542373, "percentage": 90.2, "elapsed_time": "4:42:02", "remaining_time": "0:30:39"} +{"current_steps": 1464, "total_steps": 1622, "loss": 1.4721, "learning_rate": 5.731658810405849e-07, "epoch": 0.9023112480739599, "percentage": 90.26, "elapsed_time": "4:42:13", "remaining_time": "0:30:27"} +{"current_steps": 1465, "total_steps": 1622, "loss": 1.4535, "learning_rate": 5.660025915653433e-07, "epoch": 0.9029275808936826, "percentage": 90.32, "elapsed_time": "4:42:24", "remaining_time": "0:30:15"} +{"current_steps": 1466, "total_steps": 1622, "loss": 1.4945, "learning_rate": 5.588830426911418e-07, "epoch": 0.9035439137134053, "percentage": 90.38, "elapsed_time": "4:42:35", "remaining_time": "0:30:04"} +{"current_steps": 1467, "total_steps": 1622, "loss": 1.4374, "learning_rate": 5.518072674276764e-07, "epoch": 0.9041602465331279, "percentage": 90.44, "elapsed_time": "4:42:47", "remaining_time": "0:29:52"} +{"current_steps": 1468, "total_steps": 1622, "loss": 1.4603, "learning_rate": 5.447752985816812e-07, "epoch": 0.9047765793528505, "percentage": 90.51, "elapsed_time": "4:42:58", "remaining_time": "0:29:41"} +{"current_steps": 1469, "total_steps": 1622, "loss": 1.4825, "learning_rate": 5.377871687567815e-07, "epoch": 0.9053929121725732, "percentage": 90.57, "elapsed_time": "4:43:09", "remaining_time": "0:29:29"} +{"current_steps": 1470, "total_steps": 1622, "loss": 1.4222, "learning_rate": 5.308429103533518e-07, "epoch": 0.9060092449922958, "percentage": 90.63, "elapsed_time": "4:43:20", "remaining_time": "0:29:17"} +{"current_steps": 1471, "total_steps": 1622, "loss": 1.4624, "learning_rate": 5.239425555683486e-07, "epoch": 0.9066255778120185, "percentage": 90.69, "elapsed_time": "4:43:32", "remaining_time": "0:29:06"} +{"current_steps": 1472, "total_steps": 1622, "loss": 1.5109, "learning_rate": 5.170861363951729e-07, "epoch": 0.9072419106317411, "percentage": 90.75, "elapsed_time": "4:43:43", "remaining_time": "0:28:54"} +{"current_steps": 1473, "total_steps": 1622, "loss": 1.5223, "learning_rate": 5.102736846235202e-07, "epoch": 0.9078582434514638, "percentage": 90.81, "elapsed_time": "4:43:54", "remaining_time": "0:28:43"} +{"current_steps": 1474, "total_steps": 1622, "loss": 1.5483, "learning_rate": 5.035052318392342e-07, "epoch": 0.9084745762711864, "percentage": 90.88, "elapsed_time": "4:44:05", "remaining_time": "0:28:31"} +{"current_steps": 1475, "total_steps": 1622, "loss": 1.4643, "learning_rate": 4.967808094241477e-07, "epoch": 0.9090909090909091, "percentage": 90.94, "elapsed_time": "4:44:17", "remaining_time": "0:28:19"} +{"current_steps": 1476, "total_steps": 1622, "loss": 1.4771, "learning_rate": 4.901004485559569e-07, "epoch": 0.9097072419106318, "percentage": 91.0, "elapsed_time": "4:44:28", "remaining_time": "0:28:08"} +{"current_steps": 1477, "total_steps": 1622, "loss": 1.4656, "learning_rate": 4.834641802080675e-07, "epoch": 0.9103235747303544, "percentage": 91.06, "elapsed_time": "4:44:39", "remaining_time": "0:27:56"} +{"current_steps": 1478, "total_steps": 1622, "loss": 1.4785, "learning_rate": 4.768720351494439e-07, "epoch": 0.910939907550077, "percentage": 91.12, "elapsed_time": "4:44:51", "remaining_time": "0:27:45"} +{"current_steps": 1479, "total_steps": 1622, "loss": 1.4895, "learning_rate": 4.7032404394447783e-07, "epoch": 0.9115562403697997, "percentage": 91.18, "elapsed_time": "4:45:02", "remaining_time": "0:27:33"} +{"current_steps": 1480, "total_steps": 1622, "loss": 1.4695, "learning_rate": 4.638202369528444e-07, "epoch": 0.9121725731895224, "percentage": 91.25, "elapsed_time": "4:45:13", "remaining_time": "0:27:22"} +{"current_steps": 1481, "total_steps": 1622, "loss": 1.4368, "learning_rate": 4.573606443293532e-07, "epoch": 0.912788906009245, "percentage": 91.31, "elapsed_time": "4:45:25", "remaining_time": "0:27:10"} +{"current_steps": 1482, "total_steps": 1622, "loss": 1.4555, "learning_rate": 4.5094529602381807e-07, "epoch": 0.9134052388289676, "percentage": 91.37, "elapsed_time": "4:45:36", "remaining_time": "0:26:58"} +{"current_steps": 1483, "total_steps": 1622, "loss": 1.4163, "learning_rate": 4.445742217809168e-07, "epoch": 0.9140215716486902, "percentage": 91.43, "elapsed_time": "4:45:47", "remaining_time": "0:26:47"} +{"current_steps": 1484, "total_steps": 1622, "loss": 1.5041, "learning_rate": 4.3824745114004807e-07, "epoch": 0.914637904468413, "percentage": 91.49, "elapsed_time": "4:45:58", "remaining_time": "0:26:35"} +{"current_steps": 1485, "total_steps": 1622, "loss": 1.433, "learning_rate": 4.3196501343519604e-07, "epoch": 0.9152542372881356, "percentage": 91.55, "elapsed_time": "4:46:10", "remaining_time": "0:26:24"} +{"current_steps": 1486, "total_steps": 1622, "loss": 1.4832, "learning_rate": 4.257269377947992e-07, "epoch": 0.9158705701078582, "percentage": 91.62, "elapsed_time": "4:46:21", "remaining_time": "0:26:12"} +{"current_steps": 1487, "total_steps": 1622, "loss": 1.4899, "learning_rate": 4.195332531416119e-07, "epoch": 0.916486902927581, "percentage": 91.68, "elapsed_time": "4:46:32", "remaining_time": "0:26:00"} +{"current_steps": 1488, "total_steps": 1622, "loss": 1.4748, "learning_rate": 4.133839881925672e-07, "epoch": 0.9171032357473036, "percentage": 91.74, "elapsed_time": "4:46:43", "remaining_time": "0:25:49"} +{"current_steps": 1489, "total_steps": 1622, "loss": 1.4409, "learning_rate": 4.072791714586499e-07, "epoch": 0.9177195685670262, "percentage": 91.8, "elapsed_time": "4:46:55", "remaining_time": "0:25:37"} +{"current_steps": 1490, "total_steps": 1622, "loss": 1.4497, "learning_rate": 4.0121883124475847e-07, "epoch": 0.9183359013867488, "percentage": 91.86, "elapsed_time": "4:47:06", "remaining_time": "0:25:26"} +{"current_steps": 1491, "total_steps": 1622, "loss": 1.4187, "learning_rate": 3.952029956495795e-07, "epoch": 0.9189522342064715, "percentage": 91.92, "elapsed_time": "4:47:17", "remaining_time": "0:25:14"} +{"current_steps": 1492, "total_steps": 1622, "loss": 1.5473, "learning_rate": 3.8923169256545267e-07, "epoch": 0.9195685670261942, "percentage": 91.99, "elapsed_time": "4:47:28", "remaining_time": "0:25:02"} +{"current_steps": 1493, "total_steps": 1622, "loss": 1.3742, "learning_rate": 3.8330494967824485e-07, "epoch": 0.9201848998459168, "percentage": 92.05, "elapsed_time": "4:47:40", "remaining_time": "0:24:51"} +{"current_steps": 1494, "total_steps": 1622, "loss": 1.4691, "learning_rate": 3.774227944672182e-07, "epoch": 0.9208012326656394, "percentage": 92.11, "elapsed_time": "4:47:51", "remaining_time": "0:24:39"} +{"current_steps": 1495, "total_steps": 1622, "loss": 1.5068, "learning_rate": 3.7158525420490367e-07, "epoch": 0.9214175654853621, "percentage": 92.17, "elapsed_time": "4:48:02", "remaining_time": "0:24:28"} +{"current_steps": 1496, "total_steps": 1622, "loss": 1.4852, "learning_rate": 3.657923559569809e-07, "epoch": 0.9220338983050848, "percentage": 92.23, "elapsed_time": "4:48:13", "remaining_time": "0:24:16"} +{"current_steps": 1497, "total_steps": 1622, "loss": 1.4252, "learning_rate": 3.6004412658214195e-07, "epoch": 0.9226502311248074, "percentage": 92.29, "elapsed_time": "4:48:25", "remaining_time": "0:24:04"} +{"current_steps": 1498, "total_steps": 1622, "loss": 1.4982, "learning_rate": 3.543405927319743e-07, "epoch": 0.92326656394453, "percentage": 92.36, "elapsed_time": "4:48:36", "remaining_time": "0:23:53"} +{"current_steps": 1499, "total_steps": 1622, "loss": 1.4933, "learning_rate": 3.4868178085083583e-07, "epoch": 0.9238828967642527, "percentage": 92.42, "elapsed_time": "4:48:47", "remaining_time": "0:23:41"} +{"current_steps": 1500, "total_steps": 1622, "loss": 1.4993, "learning_rate": 3.430677171757324e-07, "epoch": 0.9244992295839753, "percentage": 92.48, "elapsed_time": "4:48:58", "remaining_time": "0:23:30"} +{"current_steps": 1501, "total_steps": 1622, "loss": 1.4477, "learning_rate": 3.3749842773619144e-07, "epoch": 0.925115562403698, "percentage": 92.54, "elapsed_time": "4:49:24", "remaining_time": "0:23:19"} +{"current_steps": 1502, "total_steps": 1622, "loss": 1.4623, "learning_rate": 3.3197393835414984e-07, "epoch": 0.9257318952234207, "percentage": 92.6, "elapsed_time": "4:49:36", "remaining_time": "0:23:08"} +{"current_steps": 1503, "total_steps": 1622, "loss": 1.4606, "learning_rate": 3.26494274643826e-07, "epoch": 0.9263482280431433, "percentage": 92.66, "elapsed_time": "4:49:47", "remaining_time": "0:22:56"} +{"current_steps": 1504, "total_steps": 1622, "loss": 1.4929, "learning_rate": 3.210594620116092e-07, "epoch": 0.9269645608628659, "percentage": 92.73, "elapsed_time": "4:49:58", "remaining_time": "0:22:45"} +{"current_steps": 1505, "total_steps": 1622, "loss": 1.5075, "learning_rate": 3.156695256559328e-07, "epoch": 0.9275808936825886, "percentage": 92.79, "elapsed_time": "4:50:09", "remaining_time": "0:22:33"} +{"current_steps": 1506, "total_steps": 1622, "loss": 1.4663, "learning_rate": 3.1032449056716206e-07, "epoch": 0.9281972265023113, "percentage": 92.85, "elapsed_time": "4:50:21", "remaining_time": "0:22:21"} +{"current_steps": 1507, "total_steps": 1622, "loss": 1.485, "learning_rate": 3.050243815274823e-07, "epoch": 0.9288135593220339, "percentage": 92.91, "elapsed_time": "4:50:32", "remaining_time": "0:22:10"} +{"current_steps": 1508, "total_steps": 1622, "loss": 1.4836, "learning_rate": 2.9976922311077627e-07, "epoch": 0.9294298921417565, "percentage": 92.97, "elapsed_time": "4:50:43", "remaining_time": "0:21:58"} +{"current_steps": 1509, "total_steps": 1622, "loss": 1.4819, "learning_rate": 2.9455903968251376e-07, "epoch": 0.9300462249614792, "percentage": 93.03, "elapsed_time": "4:50:54", "remaining_time": "0:21:47"} +{"current_steps": 1510, "total_steps": 1622, "loss": 1.5192, "learning_rate": 2.8939385539964114e-07, "epoch": 0.9306625577812019, "percentage": 93.09, "elapsed_time": "4:51:06", "remaining_time": "0:21:35"} +{"current_steps": 1511, "total_steps": 1622, "loss": 1.4483, "learning_rate": 2.8427369421046513e-07, "epoch": 0.9312788906009245, "percentage": 93.16, "elapsed_time": "4:51:17", "remaining_time": "0:21:23"} +{"current_steps": 1512, "total_steps": 1622, "loss": 1.5175, "learning_rate": 2.7919857985454157e-07, "epoch": 0.9318952234206471, "percentage": 93.22, "elapsed_time": "4:51:28", "remaining_time": "0:21:12"} +{"current_steps": 1513, "total_steps": 1622, "loss": 1.4114, "learning_rate": 2.741685358625723e-07, "epoch": 0.9325115562403699, "percentage": 93.28, "elapsed_time": "4:51:39", "remaining_time": "0:21:00"} +{"current_steps": 1514, "total_steps": 1622, "loss": 1.4559, "learning_rate": 2.691835855562852e-07, "epoch": 0.9331278890600925, "percentage": 93.34, "elapsed_time": "4:51:51", "remaining_time": "0:20:49"} +{"current_steps": 1515, "total_steps": 1622, "loss": 1.4047, "learning_rate": 2.642437520483376e-07, "epoch": 0.9337442218798151, "percentage": 93.4, "elapsed_time": "4:52:02", "remaining_time": "0:20:37"} +{"current_steps": 1516, "total_steps": 1622, "loss": 1.5039, "learning_rate": 2.5934905824219756e-07, "epoch": 0.9343605546995377, "percentage": 93.46, "elapsed_time": "4:52:13", "remaining_time": "0:20:25"} +{"current_steps": 1517, "total_steps": 1622, "loss": 1.4881, "learning_rate": 2.544995268320494e-07, "epoch": 0.9349768875192604, "percentage": 93.53, "elapsed_time": "4:52:24", "remaining_time": "0:20:14"} +{"current_steps": 1518, "total_steps": 1622, "loss": 1.4489, "learning_rate": 2.496951803026781e-07, "epoch": 0.9355932203389831, "percentage": 93.59, "elapsed_time": "4:52:35", "remaining_time": "0:20:02"} +{"current_steps": 1519, "total_steps": 1622, "loss": 1.4614, "learning_rate": 2.4493604092937106e-07, "epoch": 0.9362095531587057, "percentage": 93.65, "elapsed_time": "4:52:47", "remaining_time": "0:19:51"} +{"current_steps": 1520, "total_steps": 1622, "loss": 1.5283, "learning_rate": 2.402221307778152e-07, "epoch": 0.9368258859784283, "percentage": 93.71, "elapsed_time": "4:52:58", "remaining_time": "0:19:39"} +{"current_steps": 1521, "total_steps": 1622, "loss": 1.4884, "learning_rate": 2.3555347170398868e-07, "epoch": 0.937442218798151, "percentage": 93.77, "elapsed_time": "4:53:09", "remaining_time": "0:19:28"} +{"current_steps": 1522, "total_steps": 1622, "loss": 1.4578, "learning_rate": 2.3093008535406746e-07, "epoch": 0.9380585516178737, "percentage": 93.83, "elapsed_time": "4:53:21", "remaining_time": "0:19:16"} +{"current_steps": 1523, "total_steps": 1622, "loss": 1.4358, "learning_rate": 2.2635199316431877e-07, "epoch": 0.9386748844375963, "percentage": 93.9, "elapsed_time": "4:53:32", "remaining_time": "0:19:04"} +{"current_steps": 1524, "total_steps": 1622, "loss": 1.5033, "learning_rate": 2.2181921636100668e-07, "epoch": 0.9392912172573189, "percentage": 93.96, "elapsed_time": "4:53:43", "remaining_time": "0:18:53"} +{"current_steps": 1525, "total_steps": 1622, "loss": 1.4141, "learning_rate": 2.1733177596028555e-07, "epoch": 0.9399075500770416, "percentage": 94.02, "elapsed_time": "4:53:54", "remaining_time": "0:18:41"} +{"current_steps": 1526, "total_steps": 1622, "loss": 1.5218, "learning_rate": 2.1288969276811678e-07, "epoch": 0.9405238828967643, "percentage": 94.08, "elapsed_time": "4:54:05", "remaining_time": "0:18:30"} +{"current_steps": 1527, "total_steps": 1622, "loss": 1.4259, "learning_rate": 2.0849298738015555e-07, "epoch": 0.9411402157164869, "percentage": 94.14, "elapsed_time": "4:54:17", "remaining_time": "0:18:18"} +{"current_steps": 1528, "total_steps": 1622, "loss": 1.3848, "learning_rate": 2.0414168018166758e-07, "epoch": 0.9417565485362096, "percentage": 94.2, "elapsed_time": "4:54:28", "remaining_time": "0:18:06"} +{"current_steps": 1529, "total_steps": 1622, "loss": 1.5044, "learning_rate": 1.9983579134743026e-07, "epoch": 0.9423728813559322, "percentage": 94.27, "elapsed_time": "4:54:39", "remaining_time": "0:17:55"} +{"current_steps": 1530, "total_steps": 1622, "loss": 1.508, "learning_rate": 1.9557534084163943e-07, "epoch": 0.9429892141756548, "percentage": 94.33, "elapsed_time": "4:54:50", "remaining_time": "0:17:43"} +{"current_steps": 1531, "total_steps": 1622, "loss": 1.4352, "learning_rate": 1.9136034841781394e-07, "epoch": 0.9436055469953775, "percentage": 94.39, "elapsed_time": "4:55:02", "remaining_time": "0:17:32"} +{"current_steps": 1532, "total_steps": 1622, "loss": 1.4729, "learning_rate": 1.8719083361870894e-07, "epoch": 0.9442218798151002, "percentage": 94.45, "elapsed_time": "4:55:13", "remaining_time": "0:17:20"} +{"current_steps": 1533, "total_steps": 1622, "loss": 1.3668, "learning_rate": 1.830668157762272e-07, "epoch": 0.9448382126348228, "percentage": 94.51, "elapsed_time": "4:55:24", "remaining_time": "0:17:09"} +{"current_steps": 1534, "total_steps": 1622, "loss": 1.4726, "learning_rate": 1.7898831401131688e-07, "epoch": 0.9454545454545454, "percentage": 94.57, "elapsed_time": "4:55:35", "remaining_time": "0:16:57"} +{"current_steps": 1535, "total_steps": 1622, "loss": 1.4921, "learning_rate": 1.7495534723389717e-07, "epoch": 0.9460708782742681, "percentage": 94.64, "elapsed_time": "4:55:47", "remaining_time": "0:16:45"} +{"current_steps": 1536, "total_steps": 1622, "loss": 1.4585, "learning_rate": 1.7096793414276613e-07, "epoch": 0.9466872110939908, "percentage": 94.7, "elapsed_time": "4:55:58", "remaining_time": "0:16:34"} +{"current_steps": 1537, "total_steps": 1622, "loss": 1.4065, "learning_rate": 1.6702609322550857e-07, "epoch": 0.9473035439137134, "percentage": 94.76, "elapsed_time": "4:56:09", "remaining_time": "0:16:22"} +{"current_steps": 1538, "total_steps": 1622, "loss": 1.4778, "learning_rate": 1.6312984275841714e-07, "epoch": 0.947919876733436, "percentage": 94.82, "elapsed_time": "4:56:20", "remaining_time": "0:16:11"} +{"current_steps": 1539, "total_steps": 1622, "loss": 1.4896, "learning_rate": 1.5927920080640368e-07, "epoch": 0.9485362095531588, "percentage": 94.88, "elapsed_time": "4:56:32", "remaining_time": "0:15:59"} +{"current_steps": 1540, "total_steps": 1622, "loss": 1.4656, "learning_rate": 1.5547418522291802e-07, "epoch": 0.9491525423728814, "percentage": 94.94, "elapsed_time": "4:56:43", "remaining_time": "0:15:47"} +{"current_steps": 1541, "total_steps": 1622, "loss": 1.4465, "learning_rate": 1.517148136498614e-07, "epoch": 0.949768875192604, "percentage": 95.01, "elapsed_time": "4:56:54", "remaining_time": "0:15:36"} +{"current_steps": 1542, "total_steps": 1622, "loss": 1.3943, "learning_rate": 1.4800110351751218e-07, "epoch": 0.9503852080123266, "percentage": 95.07, "elapsed_time": "4:57:05", "remaining_time": "0:15:24"} +{"current_steps": 1543, "total_steps": 1622, "loss": 1.3823, "learning_rate": 1.443330720444358e-07, "epoch": 0.9510015408320494, "percentage": 95.13, "elapsed_time": "4:57:17", "remaining_time": "0:15:13"} +{"current_steps": 1544, "total_steps": 1622, "loss": 1.4985, "learning_rate": 1.4071073623740938e-07, "epoch": 0.951617873651772, "percentage": 95.19, "elapsed_time": "4:57:28", "remaining_time": "0:15:01"} +{"current_steps": 1545, "total_steps": 1622, "loss": 1.5204, "learning_rate": 1.3713411289134394e-07, "epoch": 0.9522342064714946, "percentage": 95.25, "elapsed_time": "4:57:39", "remaining_time": "0:14:50"} +{"current_steps": 1546, "total_steps": 1622, "loss": 1.504, "learning_rate": 1.3360321858920777e-07, "epoch": 0.9528505392912172, "percentage": 95.31, "elapsed_time": "4:57:50", "remaining_time": "0:14:38"} +{"current_steps": 1547, "total_steps": 1622, "loss": 1.4413, "learning_rate": 1.3011806970194109e-07, "epoch": 0.95346687211094, "percentage": 95.38, "elapsed_time": "4:58:02", "remaining_time": "0:14:26"} +{"current_steps": 1548, "total_steps": 1622, "loss": 1.4669, "learning_rate": 1.266786823883903e-07, "epoch": 0.9540832049306626, "percentage": 95.44, "elapsed_time": "4:58:13", "remaining_time": "0:14:15"} +{"current_steps": 1549, "total_steps": 1622, "loss": 1.4358, "learning_rate": 1.232850725952306e-07, "epoch": 0.9546995377503852, "percentage": 95.5, "elapsed_time": "4:58:24", "remaining_time": "0:14:03"} +{"current_steps": 1550, "total_steps": 1622, "loss": 1.4553, "learning_rate": 1.1993725605688345e-07, "epoch": 0.9553158705701078, "percentage": 95.56, "elapsed_time": "4:58:35", "remaining_time": "0:13:52"} +{"current_steps": 1551, "total_steps": 1622, "loss": 1.4666, "learning_rate": 1.1663524829545802e-07, "epoch": 0.9559322033898305, "percentage": 95.62, "elapsed_time": "4:59:01", "remaining_time": "0:13:41"} +{"current_steps": 1552, "total_steps": 1622, "loss": 1.4375, "learning_rate": 1.1337906462066783e-07, "epoch": 0.9565485362095532, "percentage": 95.68, "elapsed_time": "4:59:12", "remaining_time": "0:13:29"} +{"current_steps": 1553, "total_steps": 1622, "loss": 1.3662, "learning_rate": 1.101687201297641e-07, "epoch": 0.9571648690292758, "percentage": 95.75, "elapsed_time": "4:59:24", "remaining_time": "0:13:18"} +{"current_steps": 1554, "total_steps": 1622, "loss": 1.4387, "learning_rate": 1.070042297074636e-07, "epoch": 0.9577812018489985, "percentage": 95.81, "elapsed_time": "4:59:35", "remaining_time": "0:13:06"} +{"current_steps": 1555, "total_steps": 1622, "loss": 1.4617, "learning_rate": 1.0388560802588766e-07, "epoch": 0.9583975346687211, "percentage": 95.87, "elapsed_time": "4:59:46", "remaining_time": "0:12:54"} +{"current_steps": 1556, "total_steps": 1622, "loss": 1.4933, "learning_rate": 1.0081286954447989e-07, "epoch": 0.9590138674884437, "percentage": 95.93, "elapsed_time": "4:59:57", "remaining_time": "0:12:43"} +{"current_steps": 1557, "total_steps": 1622, "loss": 1.4432, "learning_rate": 9.778602850995078e-08, "epoch": 0.9596302003081664, "percentage": 95.99, "elapsed_time": "5:00:09", "remaining_time": "0:12:31"} +{"current_steps": 1558, "total_steps": 1622, "loss": 1.4811, "learning_rate": 9.480509895620882e-08, "epoch": 0.9602465331278891, "percentage": 96.05, "elapsed_time": "5:00:20", "remaining_time": "0:12:20"} +{"current_steps": 1559, "total_steps": 1622, "loss": 1.4675, "learning_rate": 9.187009470429386e-08, "epoch": 0.9608628659476117, "percentage": 96.12, "elapsed_time": "5:00:31", "remaining_time": "0:12:08"} +{"current_steps": 1560, "total_steps": 1622, "loss": 1.4768, "learning_rate": 8.898102936231279e-08, "epoch": 0.9614791987673343, "percentage": 96.18, "elapsed_time": "5:00:42", "remaining_time": "0:11:57"} +{"current_steps": 1561, "total_steps": 1622, "loss": 1.5297, "learning_rate": 8.613791632537726e-08, "epoch": 0.962095531587057, "percentage": 96.24, "elapsed_time": "5:00:54", "remaining_time": "0:11:45"} +{"current_steps": 1562, "total_steps": 1622, "loss": 1.4777, "learning_rate": 8.334076877554275e-08, "epoch": 0.9627118644067797, "percentage": 96.3, "elapsed_time": "5:01:05", "remaining_time": "0:11:33"} +{"current_steps": 1563, "total_steps": 1622, "loss": 1.4425, "learning_rate": 8.058959968174518e-08, "epoch": 0.9633281972265023, "percentage": 96.36, "elapsed_time": "5:01:16", "remaining_time": "0:11:22"} +{"current_steps": 1564, "total_steps": 1622, "loss": 1.4753, "learning_rate": 7.788442179974432e-08, "epoch": 0.9639445300462249, "percentage": 96.42, "elapsed_time": "5:01:27", "remaining_time": "0:11:10"} +{"current_steps": 1565, "total_steps": 1622, "loss": 1.4643, "learning_rate": 7.522524767206051e-08, "epoch": 0.9645608628659477, "percentage": 96.49, "elapsed_time": "5:01:39", "remaining_time": "0:10:59"} +{"current_steps": 1566, "total_steps": 1622, "loss": 1.4927, "learning_rate": 7.261208962791699e-08, "epoch": 0.9651771956856703, "percentage": 96.55, "elapsed_time": "5:01:50", "remaining_time": "0:10:47"} +{"current_steps": 1567, "total_steps": 1622, "loss": 1.5221, "learning_rate": 7.004495978318649e-08, "epoch": 0.9657935285053929, "percentage": 96.61, "elapsed_time": "5:02:01", "remaining_time": "0:10:36"} +{"current_steps": 1568, "total_steps": 1622, "loss": 1.4658, "learning_rate": 6.752387004033245e-08, "epoch": 0.9664098613251155, "percentage": 96.67, "elapsed_time": "5:02:13", "remaining_time": "0:10:24"} +{"current_steps": 1569, "total_steps": 1622, "loss": 1.4564, "learning_rate": 6.504883208835245e-08, "epoch": 0.9670261941448383, "percentage": 96.73, "elapsed_time": "5:02:24", "remaining_time": "0:10:12"} +{"current_steps": 1570, "total_steps": 1622, "loss": 1.4062, "learning_rate": 6.261985740272592e-08, "epoch": 0.9676425269645609, "percentage": 96.79, "elapsed_time": "5:02:35", "remaining_time": "0:10:01"} +{"current_steps": 1571, "total_steps": 1622, "loss": 1.5183, "learning_rate": 6.023695724536316e-08, "epoch": 0.9682588597842835, "percentage": 96.86, "elapsed_time": "5:02:46", "remaining_time": "0:09:49"} +{"current_steps": 1572, "total_steps": 1622, "loss": 1.4946, "learning_rate": 5.790014266454536e-08, "epoch": 0.9688751926040061, "percentage": 96.92, "elapsed_time": "5:02:57", "remaining_time": "0:09:38"} +{"current_steps": 1573, "total_steps": 1622, "loss": 1.5247, "learning_rate": 5.560942449488349e-08, "epoch": 0.9694915254237289, "percentage": 96.98, "elapsed_time": "5:03:09", "remaining_time": "0:09:26"} +{"current_steps": 1574, "total_steps": 1622, "loss": 1.4387, "learning_rate": 5.3364813357261734e-08, "epoch": 0.9701078582434515, "percentage": 97.04, "elapsed_time": "5:03:20", "remaining_time": "0:09:15"} +{"current_steps": 1575, "total_steps": 1622, "loss": 1.4525, "learning_rate": 5.11663196587886e-08, "epoch": 0.9707241910631741, "percentage": 97.1, "elapsed_time": "5:03:31", "remaining_time": "0:09:03"} +{"current_steps": 1576, "total_steps": 1622, "loss": 1.5075, "learning_rate": 4.901395359274919e-08, "epoch": 0.9713405238828967, "percentage": 97.16, "elapsed_time": "5:03:42", "remaining_time": "0:08:51"} +{"current_steps": 1577, "total_steps": 1622, "loss": 1.4492, "learning_rate": 4.690772513856079e-08, "epoch": 0.9719568567026194, "percentage": 97.23, "elapsed_time": "5:03:54", "remaining_time": "0:08:40"} +{"current_steps": 1578, "total_steps": 1622, "loss": 1.5378, "learning_rate": 4.4847644061722925e-08, "epoch": 0.9725731895223421, "percentage": 97.29, "elapsed_time": "5:04:05", "remaining_time": "0:08:28"} +{"current_steps": 1579, "total_steps": 1622, "loss": 1.4976, "learning_rate": 4.283371991377405e-08, "epoch": 0.9731895223420647, "percentage": 97.35, "elapsed_time": "5:04:16", "remaining_time": "0:08:17"} +{"current_steps": 1580, "total_steps": 1622, "loss": 1.3616, "learning_rate": 4.086596203224491e-08, "epoch": 0.9738058551617874, "percentage": 97.41, "elapsed_time": "5:04:27", "remaining_time": "0:08:05"} +{"current_steps": 1581, "total_steps": 1622, "loss": 1.4484, "learning_rate": 3.894437954061969e-08, "epoch": 0.97442218798151, "percentage": 97.47, "elapsed_time": "5:04:39", "remaining_time": "0:07:54"} +{"current_steps": 1582, "total_steps": 1622, "loss": 1.4727, "learning_rate": 3.706898134828829e-08, "epoch": 0.9750385208012327, "percentage": 97.53, "elapsed_time": "5:04:50", "remaining_time": "0:07:42"} +{"current_steps": 1583, "total_steps": 1622, "loss": 1.4488, "learning_rate": 3.5239776150509666e-08, "epoch": 0.9756548536209553, "percentage": 97.6, "elapsed_time": "5:05:01", "remaining_time": "0:07:30"} +{"current_steps": 1584, "total_steps": 1622, "loss": 1.4934, "learning_rate": 3.3456772428368536e-08, "epoch": 0.976271186440678, "percentage": 97.66, "elapsed_time": "5:05:12", "remaining_time": "0:07:19"} +{"current_steps": 1585, "total_steps": 1622, "loss": 1.4882, "learning_rate": 3.171997844873764e-08, "epoch": 0.9768875192604006, "percentage": 97.72, "elapsed_time": "5:05:24", "remaining_time": "0:07:07"} +{"current_steps": 1586, "total_steps": 1622, "loss": 1.4752, "learning_rate": 3.0029402264237784e-08, "epoch": 0.9775038520801232, "percentage": 97.78, "elapsed_time": "5:05:35", "remaining_time": "0:06:56"} +{"current_steps": 1587, "total_steps": 1622, "loss": 1.447, "learning_rate": 2.8385051713204493e-08, "epoch": 0.9781201848998459, "percentage": 97.84, "elapsed_time": "5:05:46", "remaining_time": "0:06:44"} +{"current_steps": 1588, "total_steps": 1622, "loss": 1.4272, "learning_rate": 2.678693441964586e-08, "epoch": 0.9787365177195686, "percentage": 97.9, "elapsed_time": "5:05:57", "remaining_time": "0:06:33"} +{"current_steps": 1589, "total_steps": 1622, "loss": 1.4493, "learning_rate": 2.5235057793211447e-08, "epoch": 0.9793528505392912, "percentage": 97.97, "elapsed_time": "5:06:09", "remaining_time": "0:06:21"} +{"current_steps": 1590, "total_steps": 1622, "loss": 1.4521, "learning_rate": 2.3729429029154538e-08, "epoch": 0.9799691833590138, "percentage": 98.03, "elapsed_time": "5:06:20", "remaining_time": "0:06:09"} +{"current_steps": 1591, "total_steps": 1622, "loss": 1.4561, "learning_rate": 2.2270055108304377e-08, "epoch": 0.9805855161787366, "percentage": 98.09, "elapsed_time": "5:06:31", "remaining_time": "0:05:58"} +{"current_steps": 1592, "total_steps": 1622, "loss": 1.4661, "learning_rate": 2.0856942797027326e-08, "epoch": 0.9812018489984592, "percentage": 98.15, "elapsed_time": "5:06:42", "remaining_time": "0:05:46"} +{"current_steps": 1593, "total_steps": 1622, "loss": 1.3981, "learning_rate": 1.9490098647200196e-08, "epoch": 0.9818181818181818, "percentage": 98.21, "elapsed_time": "5:06:54", "remaining_time": "0:05:35"} +{"current_steps": 1594, "total_steps": 1622, "loss": 1.4834, "learning_rate": 1.8169528996175857e-08, "epoch": 0.9824345146379044, "percentage": 98.27, "elapsed_time": "5:07:05", "remaining_time": "0:05:23"} +{"current_steps": 1595, "total_steps": 1622, "loss": 1.4546, "learning_rate": 1.6895239966759903e-08, "epoch": 0.9830508474576272, "percentage": 98.34, "elapsed_time": "5:07:16", "remaining_time": "0:05:12"} +{"current_steps": 1596, "total_steps": 1622, "loss": 1.4444, "learning_rate": 1.5667237467174024e-08, "epoch": 0.9836671802773498, "percentage": 98.4, "elapsed_time": "5:07:27", "remaining_time": "0:05:00"} +{"current_steps": 1597, "total_steps": 1622, "loss": 1.4419, "learning_rate": 1.448552719103602e-08, "epoch": 0.9842835130970724, "percentage": 98.46, "elapsed_time": "5:07:38", "remaining_time": "0:04:48"} +{"current_steps": 1598, "total_steps": 1622, "loss": 1.4922, "learning_rate": 1.3350114617329823e-08, "epoch": 0.984899845916795, "percentage": 98.52, "elapsed_time": "5:07:50", "remaining_time": "0:04:37"} +{"current_steps": 1599, "total_steps": 1622, "loss": 1.4828, "learning_rate": 1.2261005010381077e-08, "epoch": 0.9855161787365178, "percentage": 98.58, "elapsed_time": "5:08:01", "remaining_time": "0:04:25"} +{"current_steps": 1600, "total_steps": 1622, "loss": 1.4893, "learning_rate": 1.1218203419829376e-08, "epoch": 0.9861325115562404, "percentage": 98.64, "elapsed_time": "5:08:13", "remaining_time": "0:04:14"} +{"current_steps": 1601, "total_steps": 1622, "loss": 1.445, "learning_rate": 1.0221714680611617e-08, "epoch": 0.986748844375963, "percentage": 98.71, "elapsed_time": "5:08:38", "remaining_time": "0:04:02"} +{"current_steps": 1602, "total_steps": 1622, "loss": 1.4871, "learning_rate": 9.271543412935346e-09, "epoch": 0.9873651771956856, "percentage": 98.77, "elapsed_time": "5:08:50", "remaining_time": "0:03:51"} +{"current_steps": 1603, "total_steps": 1622, "loss": 1.4332, "learning_rate": 8.367694022254347e-09, "epoch": 0.9879815100154083, "percentage": 98.83, "elapsed_time": "5:09:01", "remaining_time": "0:03:39"} +{"current_steps": 1604, "total_steps": 1622, "loss": 1.4944, "learning_rate": 7.510170699256413e-09, "epoch": 0.988597842835131, "percentage": 98.89, "elapsed_time": "5:09:12", "remaining_time": "0:03:28"} +{"current_steps": 1605, "total_steps": 1622, "loss": 1.379, "learning_rate": 6.698977419835606e-09, "epoch": 0.9892141756548536, "percentage": 98.95, "elapsed_time": "5:09:23", "remaining_time": "0:03:16"} +{"current_steps": 1606, "total_steps": 1622, "loss": 1.4576, "learning_rate": 5.9341179450778104e-09, "epoch": 0.9898305084745763, "percentage": 99.01, "elapsed_time": "5:09:35", "remaining_time": "0:03:05"} +{"current_steps": 1607, "total_steps": 1622, "loss": 1.5255, "learning_rate": 5.2155958212452005e-09, "epoch": 0.9904468412942989, "percentage": 99.08, "elapsed_time": "5:09:46", "remaining_time": "0:02:53"} +{"current_steps": 1608, "total_steps": 1622, "loss": 1.4558, "learning_rate": 4.54341437975514e-09, "epoch": 0.9910631741140216, "percentage": 99.14, "elapsed_time": "5:09:57", "remaining_time": "0:02:41"} +{"current_steps": 1609, "total_steps": 1622, "loss": 1.5012, "learning_rate": 3.917576737167972e-09, "epoch": 0.9916795069337442, "percentage": 99.2, "elapsed_time": "5:10:08", "remaining_time": "0:02:30"} +{"current_steps": 1610, "total_steps": 1622, "loss": 1.4125, "learning_rate": 3.338085795171475e-09, "epoch": 0.9922958397534669, "percentage": 99.26, "elapsed_time": "5:10:20", "remaining_time": "0:02:18"} +{"current_steps": 1611, "total_steps": 1622, "loss": 1.3851, "learning_rate": 2.8049442405664317e-09, "epoch": 0.9929121725731895, "percentage": 99.32, "elapsed_time": "5:10:31", "remaining_time": "0:02:07"} +{"current_steps": 1612, "total_steps": 1622, "loss": 1.447, "learning_rate": 2.3181545452588548e-09, "epoch": 0.9935285053929122, "percentage": 99.38, "elapsed_time": "5:10:42", "remaining_time": "0:01:55"} +{"current_steps": 1613, "total_steps": 1622, "loss": 1.4791, "learning_rate": 1.877718966240005e-09, "epoch": 0.9941448382126348, "percentage": 99.45, "elapsed_time": "5:10:53", "remaining_time": "0:01:44"} +{"current_steps": 1614, "total_steps": 1622, "loss": 1.4387, "learning_rate": 1.48363954558417e-09, "epoch": 0.9947611710323575, "percentage": 99.51, "elapsed_time": "5:11:05", "remaining_time": "0:01:32"} +{"current_steps": 1615, "total_steps": 1622, "loss": 1.4537, "learning_rate": 1.1359181104364513e-09, "epoch": 0.9953775038520801, "percentage": 99.57, "elapsed_time": "5:11:16", "remaining_time": "0:01:20"} +{"current_steps": 1616, "total_steps": 1622, "loss": 1.4878, "learning_rate": 8.345562730016632e-10, "epoch": 0.9959938366718027, "percentage": 99.63, "elapsed_time": "5:11:28", "remaining_time": "0:01:09"} +{"current_steps": 1617, "total_steps": 1622, "loss": 1.4138, "learning_rate": 5.79555430539891e-10, "epoch": 0.9966101694915255, "percentage": 99.69, "elapsed_time": "5:11:39", "remaining_time": "0:00:57"} +{"current_steps": 1618, "total_steps": 1622, "loss": 1.4849, "learning_rate": 3.709167653587198e-10, "epoch": 0.9972265023112481, "percentage": 99.75, "elapsed_time": "5:11:50", "remaining_time": "0:00:46"} +{"current_steps": 1619, "total_steps": 1622, "loss": 1.485, "learning_rate": 2.0864124480879377e-10, "epoch": 0.9978428351309707, "percentage": 99.82, "elapsed_time": "5:12:01", "remaining_time": "0:00:34"} +{"current_steps": 1620, "total_steps": 1622, "loss": 1.4067, "learning_rate": 9.272962127826468e-11, "epoch": 0.9984591679506933, "percentage": 99.88, "elapsed_time": "5:12:12", "remaining_time": "0:00:23"} +{"current_steps": 1621, "total_steps": 1622, "loss": 1.4316, "learning_rate": 2.318243219057159e-11, "epoch": 0.9990755007704161, "percentage": 99.94, "elapsed_time": "5:12:24", "remaining_time": "0:00:11"} +{"current_steps": 1622, "total_steps": 1622, "loss": 1.5243, "learning_rate": 0.0, "epoch": 0.9996918335901387, "percentage": 100.0, "elapsed_time": "5:12:35", "remaining_time": "0:00:00"} +{"current_steps": 1622, "total_steps": 1622, "epoch": 0.9996918335901387, "percentage": 100.0, "elapsed_time": "5:12:35", "remaining_time": "0:00:00"}