import math import re from copy import deepcopy from pathlib import Path from typing import Dict import lightning.pytorch as pl import numpy as np import torch from lightning.pytorch.callbacks import ModelCheckpoint, TQDMProgressBar from lightning.pytorch.utilities.rank_zero import rank_zero_info from torch.optim.lr_scheduler import LambdaLR from torch.utils.data.distributed import Sampler import utils # ==========LR schedulers========== class WarmupCosineSchedule(LambdaLR): """ Linear warmup and then cosine decay. Linearly increases learning rate from 0 to 1 over `warmup_steps` training steps. Decreases learning rate from 1. to 0. over remaining `t_total - warmup_steps` steps following a cosine curve. If `cycles` (default=0.5) is different from default, learning rate follows cosine function after warmup. `eta_min` (default=0.0) corresponds to the minimum learning rate reached by the scheduler. """ def __init__(self, optimizer, warmup_steps, t_total, eta_min=0.0, cycles=.5, last_epoch=-1): self.warmup_steps = warmup_steps self.t_total = t_total self.eta_min = eta_min self.cycles = cycles super(WarmupCosineSchedule, self).__init__(optimizer, self.lr_lambda, last_epoch=last_epoch) def lr_lambda(self, step): if step < self.warmup_steps: return step / max(1.0, self.warmup_steps) # progress after warmup progress = (step - self.warmup_steps) / max(1, self.t_total - self.warmup_steps) return max(self.eta_min, 0.5 * (1. + math.cos(math.pi * self.cycles * 2.0 * progress))) # ==========Torch samplers========== class DsBatchSampler(Sampler): def __init__(self, dataset, max_batch_frames, max_batch_size, sub_indices=None, num_replicas=None, rank=None, frame_count_grid=200, required_batch_count_multiple=1, batch_by_size=True, sort_by_similar_size=True, shuffle_sample=False, shuffle_batch=False, seed=0, drop_last=False) -> None: self.dataset = dataset self.max_batch_frames = max_batch_frames self.max_batch_size = max_batch_size self.sub_indices = sub_indices self.num_replicas = num_replicas self.rank = rank self.frame_count_grid = frame_count_grid self.required_batch_count_multiple = required_batch_count_multiple self.batch_by_size = batch_by_size self.sort_by_similar_size = sort_by_similar_size self.shuffle_sample = shuffle_sample self.shuffle_batch = shuffle_batch self.seed = seed self.drop_last = drop_last self.epoch = 0 self.batches = None self.formed = None def __form_batches(self): if self.formed == self.epoch + self.seed: return rng = np.random.default_rng(self.seed + self.epoch) if self.shuffle_sample: if self.sub_indices is not None: rng.shuffle(self.sub_indices) indices = np.array(self.sub_indices) else: indices = rng.permutation(len(self.dataset)) if self.sort_by_similar_size: grid = self.frame_count_grid assert grid > 0 sizes = (np.round(np.array(self.dataset._sizes)[indices] / grid) * grid).clip(grid, None).astype( np.int64) indices = indices[np.argsort(sizes, kind='mergesort')] indices = indices.tolist() else: indices = self.sub_indices if self.sub_indices is not None else list(range(len(self.dataset))) if self.batch_by_size: batches = utils.batch_by_size( indices, self.dataset.num_frames, max_batch_frames=self.max_batch_frames, max_batch_size=self.max_batch_size ) else: batches = [indices[i:i + self.max_batch_size] for i in range(0, len(indices), self.max_batch_size)] floored_total_batch_count = (len(batches) // self.num_replicas) * self.num_replicas if self.drop_last and len(batches) > floored_total_batch_count: batches = batches[:floored_total_batch_count] leftovers = [] else: leftovers = (rng.permutation(len(batches) - floored_total_batch_count) + floored_total_batch_count).tolist() batch_assignment = rng.permuted( np.arange(floored_total_batch_count).reshape(-1, self.num_replicas).transpose(), axis=0 )[self.rank].tolist() floored_batch_count = len(batch_assignment) ceiled_batch_count = floored_batch_count + (1 if len(leftovers) > 0 else 0) if self.rank < len(leftovers): batch_assignment.append(leftovers[self.rank]) elif len(leftovers) > 0: batch_assignment.append(batch_assignment[self.epoch % floored_batch_count]) if self.required_batch_count_multiple > 1 and ceiled_batch_count % self.required_batch_count_multiple != 0: # batch_assignment = batch_assignment[:((floored_batch_count \ # // self.required_batch_count_multiple) * self.required_batch_count_multiple)] ceiled_batch_count = math.ceil( ceiled_batch_count / self.required_batch_count_multiple) * self.required_batch_count_multiple for i in range(ceiled_batch_count - len(batch_assignment)): batch_assignment.append( batch_assignment[(i + self.epoch * self.required_batch_count_multiple) % floored_batch_count]) self.batches = [deepcopy(batches[i]) for i in batch_assignment] if self.shuffle_batch: rng.shuffle(self.batches) del indices del batches del batch_assignment def __iter__(self): self.__form_batches() return iter(self.batches) def __len__(self): self.__form_batches() if self.batches is None: raise RuntimeError("Batches are not initialized. Call __form_batches first.") return len(self.batches) def set_epoch(self, epoch): self.epoch = epoch class DsEvalBatchSampler(Sampler): def __init__(self, dataset, max_batch_frames, max_batch_size, rank=None, batch_by_size=True) -> None: self.dataset = dataset self.max_batch_frames = max_batch_frames self.max_batch_size = max_batch_size self.rank = rank self.batch_by_size = batch_by_size self.batches = None self.batch_size = max_batch_size self.drop_last = False if self.rank == 0: indices = list(range(len(self.dataset))) if self.batch_by_size: self.batches = utils.batch_by_size( indices, self.dataset.num_frames, max_batch_frames=self.max_batch_frames, max_batch_size=self.max_batch_size ) else: self.batches = [ indices[i:i + self.max_batch_size] for i in range(0, len(indices), self.max_batch_size) ] else: self.batches = [[0]] def __iter__(self): return iter(self.batches) def __len__(self): return len(self.batches) # ==========PL related========== class DsModelCheckpoint(ModelCheckpoint): def __init__( self, *args, permanent_ckpt_start, permanent_ckpt_interval, **kwargs ): super().__init__(*args, **kwargs) self.permanent_ckpt_start = permanent_ckpt_start or 0 self.permanent_ckpt_interval = permanent_ckpt_interval or 0 self.enable_permanent_ckpt = self.permanent_ckpt_start > 0 and self.permanent_ckpt_interval > 9 self._verbose = self.verbose self.verbose = False def state_dict(self): ret = super().state_dict() ret.pop('dirpath') return ret def load_state_dict(self, state_dict) -> None: super().load_state_dict(state_dict) def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None: if trainer.lightning_module.skip_immediate_ckpt_save: trainer.lightning_module.skip_immediate_ckpt_save = False return self.last_val_step = trainer.global_step super().on_validation_end(trainer, pl_module) def _update_best_and_save( self, current: torch.Tensor, trainer: "pl.Trainer", monitor_candidates: Dict[str, torch.Tensor] ) -> None: k = len(self.best_k_models) + 1 if self.save_top_k == -1 else self.save_top_k del_filepath = None _op = max if self.mode == "min" else min while len(self.best_k_models) > k and k > 0: self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type] self.kth_value = self.best_k_models[self.kth_best_model_path] del_filepath = self.kth_best_model_path self.best_k_models.pop(del_filepath) filepath = self._get_metric_interpolated_filepath_name(monitor_candidates, trainer, del_filepath) if del_filepath is not None and filepath != del_filepath: self._remove_checkpoint(trainer, del_filepath) if len(self.best_k_models) == k and k > 0: self.kth_best_model_path = _op(self.best_k_models, key=self.best_k_models.get) # type: ignore[arg-type] self.kth_value = self.best_k_models[self.kth_best_model_path] super()._update_best_and_save(current, trainer, monitor_candidates) def _save_checkpoint(self, trainer: "pl.Trainer", filepath: str) -> None: filepath = (Path(self.dirpath) / Path(filepath).name).resolve() super()._save_checkpoint(trainer, str(filepath)) if self._verbose: relative_path = filepath.relative_to(Path('.').resolve()) rank_zero_info(f'Checkpoint {relative_path} saved.') def _remove_checkpoint(self, trainer: "pl.Trainer", filepath: str): filepath = (Path(self.dirpath) / Path(filepath).name).resolve() relative_path = filepath.relative_to(Path('.').resolve()) search = re.search(r'steps_\d+', relative_path.stem) if search: step = int(search.group(0)[6:]) if self.enable_permanent_ckpt and \ step >= self.permanent_ckpt_start and \ (step - self.permanent_ckpt_start) % self.permanent_ckpt_interval == 0: rank_zero_info(f'Checkpoint {relative_path} is now permanent.') return super()._remove_checkpoint(trainer, filepath) if self._verbose: rank_zero_info(f'Removed checkpoint {relative_path}.') def get_latest_checkpoint_path(work_dir): if not isinstance(work_dir, Path): work_dir = Path(work_dir) if not work_dir.exists(): return None last_step = -1 last_ckpt_name = None for ckpt in work_dir.glob('model_ckpt_steps_*.ckpt'): search = re.search(r'steps_\d+', ckpt.name) if search: step = int(search.group(0)[6:]) if step > last_step: last_step = step last_ckpt_name = str(ckpt) return last_ckpt_name if last_ckpt_name is not None else None class DsTQDMProgressBar(TQDMProgressBar): def __init__(self, refresh_rate: int = 1, process_position: int = 0, show_steps: bool = True): super().__init__(refresh_rate, process_position) self.show_steps = show_steps def get_metrics(self, trainer, model): items = super().get_metrics(trainer, model) if 'batch_size' in items: items['batch_size'] = int(items['batch_size']) if self.show_steps: items['steps'] = str(trainer.global_step) for k, v in items.items(): if isinstance(v, float): if np.isnan(v): items[k] = 'nan' elif 0.001 <= v < 10: items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-') elif 0.00001 <= v < 0.001: if len(np.format_float_positional(v, unique=True, precision=8, trim='-')) > 8: items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-') else: items[k] = np.format_float_positional(v, unique=True, precision=5, trim='-') elif v < 0.00001: items[k] = np.format_float_scientific(v, precision=3, unique=True, min_digits=2, trim='-') items.pop("v_num", None) return items def get_strategy( devices="auto", num_nodes=1, accelerator="auto", strategy={"name": "auto"}, precision=None, ): from lightning.fabric.utilities.device_parser import _determine_root_gpu_device from lightning.pytorch.accelerators import AcceleratorRegistry from lightning.pytorch.accelerators.cuda import CUDAAccelerator from lightning.pytorch.accelerators.mps import MPSAccelerator from lightning.pytorch.strategies import Strategy, SingleDeviceStrategy, StrategyRegistry from lightning.pytorch.trainer.connectors import accelerator_connector from lightning.pytorch.utilities.rank_zero import rank_zero_warn class _DsAcceleratorConnector(accelerator_connector._AcceleratorConnector): def __init__(self) -> None: accelerator_connector._register_external_accelerators_and_strategies() self._registered_strategies = StrategyRegistry.available_strategies() self._accelerator_types = AcceleratorRegistry.available_accelerators() self._parallel_devices = [] self._check_config_and_set_final_flags( strategy=strategy["name"], accelerator=accelerator, precision=precision, plugins=[], sync_batchnorm=False, ) if self._accelerator_flag == "auto": self._accelerator_flag = self._choose_auto_accelerator() elif self._accelerator_flag == "gpu": self._accelerator_flag = self._choose_gpu_accelerator_backend() self._check_device_config_and_set_final_flags(devices=devices, num_nodes=num_nodes) self._set_parallel_devices_and_init_accelerator() if self._strategy_flag == "auto": self._strategy_flag = self._choose_strategy() self._check_strategy_and_fallback() self._init_strategy() for k in ["colossalai", "bagua", "hpu", "hpu_parallel", "hpu_single", "ipu", "ipu_strategy"]: if k in StrategyRegistry: StrategyRegistry.remove(k) def _init_strategy(self) -> None: assert isinstance(self._strategy_flag, (str, Strategy)) if isinstance(self._strategy_flag, str): if self._strategy_flag not in StrategyRegistry: available_names = ", ".join(sorted(StrategyRegistry.available_strategies())) or "none" raise KeyError(f"Invalid strategy name {strategy['name']}. Available names: {available_names}") data = StrategyRegistry[self._strategy_flag] params = {} # Replicate additional logic for _choose_strategy when dealing with single device strategies if issubclass(data["strategy"], SingleDeviceStrategy): if self._accelerator_flag == "hpu": params = {"device": torch.device("hpu")} elif self._accelerator_flag == "tpu": params = {"device": self._parallel_devices[0]} elif data["strategy"] is SingleDeviceStrategy: if isinstance(self._accelerator_flag, (CUDAAccelerator, MPSAccelerator)) or ( isinstance(self._accelerator_flag, str) and self._accelerator_flag in ("cuda", "gpu", "mps") ): params = {"device": _determine_root_gpu_device(self._parallel_devices)} else: params = {"device": "cpu"} else: raise NotImplementedError params.update(data["init_params"]) params.update({k: v for k, v in strategy.items() if k != "name"}) self.strategy = data["strategy"](**utils.filter_kwargs(params, data["strategy"])) elif isinstance(self._strategy_flag, SingleDeviceStrategy): params = {"device": self._strategy_flag.root_device} params.update({k: v for k, v in strategy.items() if k != "name"}) self.strategy = self._strategy_flag.__class__(**utils.filter_kwargs(params, self._strategy_flag.__class__)) else: rank_zero_warn( f"Inferred strategy {self._strategy_flag.__class__.__name__} cannot take custom configurations." f"To use custom configurations, please specify the strategy name explicitly." ) self.strategy = self._strategy_flag return _DsAcceleratorConnector().strategy