# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from diffusers import DiffusionPipeline import tqdm import torch class DDPM(DiffusionPipeline): modeling_file = "modeling_ddpm.py" def __init__(self, unet, noise_scheduler): super().__init__() self.register_modules(unet=unet, noise_scheduler=noise_scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None): if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" self.unet.to(torch_device) # 1. Sample gaussian noise image = self.noise_scheduler.sample_noise((batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), device=torch_device, generator=generator) for t in tqdm.tqdm(reversed(range(len(self.noise_scheduler))), total=len(self.noise_scheduler)): # i) define coefficients for time step t clip_image_coeff = 1 / torch.sqrt(self.noise_scheduler.get_alpha_prod(t)) clip_noise_coeff = torch.sqrt(1 / self.noise_scheduler.get_alpha_prod(t) - 1) image_coeff = (1 - self.noise_scheduler.get_alpha_prod(t - 1)) * torch.sqrt(self.noise_scheduler.get_alpha(t)) / (1 - self.noise_scheduler.get_alpha_prod(t)) clip_coeff = torch.sqrt(self.noise_scheduler.get_alpha_prod(t - 1)) * self.noise_scheduler.get_beta(t) / (1 - self.noise_scheduler.get_alpha_prod(t)) # ii) predict noise residual with torch.no_grad(): noise_residual = self.unet(image, t) # iii) compute predicted image from residual # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual pred_mean = torch.clamp(pred_mean, -1, 1) prev_image = clip_coeff * pred_mean + image_coeff * image # iv) sample variance prev_variance = self.noise_scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator) # v) sample x_{t-1} ~ N(prev_image, prev_variance) sampled_prev_image = prev_image + prev_variance image = sampled_prev_image return image