--- license: apache-2.0 base_model: distilbert/distilbert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: my_awesome_wnut_Them_all results: [] --- # my_awesome_wnut_Them_all This model is a fine-tuned version of [distilbert/distilbert-base-uncased](https://huggingface.co/distilbert/distilbert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0906 - Precision: 0.5194 - Recall: 0.5282 - F1: 0.5238 - Accuracy: 0.9716 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 251 | 0.0860 | 0.5923 | 0.3898 | 0.4702 | 0.9681 | | 0.079 | 2.0 | 502 | 0.0782 | 0.5342 | 0.5508 | 0.5424 | 0.9723 | | 0.079 | 3.0 | 753 | 0.0854 | 0.5234 | 0.5367 | 0.5300 | 0.9711 | | 0.0347 | 4.0 | 1004 | 0.0906 | 0.5194 | 0.5282 | 0.5238 | 0.9716 | ### Framework versions - Transformers 4.38.2 - Pytorch 2.2.1+cpu - Datasets 2.18.0 - Tokenizers 0.15.2