--- license: gpl-3.0 datasets: - multi_woz_v22 language: - en metrics: - bleu - rouge --- Pretrained model: [GODEL-v1_1-base-seq2seq](https://huggingface.co/microsoft/GODEL-v1_1-base-seq2seq/) Fine-tuning dataset: [MultiWOZ 2.2](https://github.com/budzianowski/multiwoz/tree/master/data/MultiWOZ_2.2) (During training, each sample had a maximum of 5 turns of context.) # How to use: ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("gonced8/godel-multiwoz") model = AutoModelForSeq2SeqLM.from_pretrained("gonced8/godel-multiwoz") # Encoder input context = [ "USER: I need train reservations from norwich to cambridge", "SYSTEM: I have 133 trains matching your request. Is there a specific day and time you would like to travel?", "USER: I'd like to leave on Monday and arrive by 18:00.", ] input_text = " EOS ".join(context) + " => " model_inputs = tokenizer( input_text, max_length=512, truncation=True, return_tensors="pt" )["input_ids"] # Decoder input answer_start = "SYSTEM: " decoder_input_ids = tokenizer( "" + answer_start, max_length=256, truncation=True, add_special_tokens=False, return_tensors="pt", )["input_ids"] # Generate output = model.generate( model_inputs, decoder_input_ids=decoder_input_ids, max_length=256 ) output = tokenizer.decode( output[0], clean_up_tokenization_spaces=True, skip_special_tokens=True ) print(output) # SYSTEM: TR4634 arrives at 17:35. Would you like me to book that for you? ```