--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4038 - Wer: 14.0551 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.672 | 0.71 | 30 | 0.3839 | 16.2013 | | 0.2682 | 1.43 | 60 | 0.3620 | 13.6562 | | 0.1681 | 2.14 | 90 | 0.3700 | 14.9478 | | 0.0726 | 2.86 | 120 | 0.3728 | 13.3713 | | 0.0429 | 3.57 | 150 | 0.3946 | 14.5109 | | 0.0223 | 4.29 | 180 | 0.3921 | 14.2640 | | 0.0114 | 5.0 | 210 | 0.4038 | 14.0551 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0