--- language: - nl license: apache-2.0 base_model: openai/whisper-large-v2 tags: - generated_from_trainer metrics: - wer model-index: - name: Whisper Large V2 results: [] --- # Whisper Large V2 This model is a fine-tuned version of [openai/whisper-large-v2](https://huggingface.co/openai/whisper-large-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.4660 - Wer: 14.5440 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.7649 | 0.55 | 30 | 0.4569 | 21.4116 | | 0.3718 | 1.09 | 60 | 0.4107 | 14.9247 | | 0.2053 | 1.64 | 90 | 0.3970 | 17.1451 | | 0.1836 | 2.18 | 120 | 0.4242 | 14.0523 | | 0.092 | 2.73 | 150 | 0.4120 | 14.4330 | | 0.0648 | 3.27 | 180 | 0.4352 | 15.5115 | | 0.0359 | 3.82 | 210 | 0.4290 | 15.0991 | | 0.0205 | 4.36 | 240 | 0.4587 | 14.6392 | | 0.0132 | 4.91 | 270 | 0.4660 | 14.5440 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.0+cu121 - Datasets 2.14.6 - Tokenizers 0.15.0