metadata
language:
- nl
license: apache-2.0
base_model: openai/whisper-large-v2
tags:
- generated_from_trainer
metrics:
- wer
model-index:
- name: Whisper Large V2
results: []
Whisper Large V2
This model is a fine-tuned version of openai/whisper-large-v2 on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.3485
- Wer: 12.5880
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 16
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.5418 | 0.49 | 30 | 0.3376 | 12.7246 |
0.2735 | 0.98 | 60 | 0.3104 | 14.0380 |
0.1441 | 1.48 | 90 | 0.3110 | 14.0380 |
0.1241 | 1.97 | 120 | 0.3036 | 12.1572 |
0.0581 | 2.46 | 150 | 0.3239 | 11.6528 |
0.0536 | 2.95 | 180 | 0.3266 | 13.2500 |
0.0274 | 3.44 | 210 | 0.3464 | 12.2307 |
0.0224 | 3.93 | 240 | 0.3380 | 12.5775 |
0.0119 | 4.43 | 270 | 0.3473 | 12.7036 |
0.0087 | 4.92 | 300 | 0.3485 | 12.5880 |
Framework versions
- Transformers 4.38.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.15.0