--- license: apache-2.0 tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: distilbert-base-uncased-finetuned-switchboard-2 results: [] --- # distilbert-base-uncased-finetuned-switchboard-2 This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset. It achieves the following results on the validation set: - Loss: 0.7090 - Accuracy: 0.7215 - Precision: 0.7176 - Recall: 0.7215 - F1: 0.7188 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.2139 | 1.0 | 370 | 0.8510 | 0.6875 | 0.6831 | 0.6875 | 0.6846 | | 0.3195 | 2.0 | 740 | 0.7090 | 0.7215 | 0.7176 | 0.7215 | 0.7188 | ### Framework versions - Transformers 4.13.0 - Pytorch 1.13.0+cu116 - Datasets 1.16.1 - Tokenizers 0.10.3