diff --git "a/trainer_state.json" "b/trainer_state.json" new file mode 100644--- /dev/null +++ "b/trainer_state.json" @@ -0,0 +1,6314 @@ +{ + "best_metric": null, + "best_model_checkpoint": null, + "epoch": 0.03797345732829604, + "eval_steps": 1, + "global_step": 392, + "is_hyper_param_search": false, + "is_local_process_zero": true, + "is_world_process_zero": true, + "log_history": [ + { + "epoch": 9.687106461300009e-05, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 1 + }, + { + "epoch": 9.687106461300009e-05, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.4378, + "eval_samples_per_second": 141.026, + "eval_steps_per_second": 2.205, + "step": 1 + }, + { + "epoch": 0.00019374212922600018, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 2 + }, + { + "epoch": 0.00019374212922600018, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.1345, + "eval_samples_per_second": 141.205, + "eval_steps_per_second": 2.208, + "step": 2 + }, + { + "epoch": 0.0002906131938390003, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 3 + }, + { + "epoch": 0.0002906131938390003, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.5289, + "eval_samples_per_second": 141.564, + "eval_steps_per_second": 2.214, + "step": 3 + }, + { + "epoch": 0.00038748425845200037, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 4 + }, + { + "epoch": 0.00038748425845200037, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.6311, + "eval_samples_per_second": 141.503, + "eval_steps_per_second": 2.213, + "step": 4 + }, + { + "epoch": 0.0004843553230650005, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 5 + }, + { + "epoch": 0.0004843553230650005, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.4512, + "eval_samples_per_second": 141.018, + "eval_steps_per_second": 2.205, + "step": 5 + }, + { + "epoch": 0.0005812263876780006, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 6 + }, + { + "epoch": 0.0005812263876780006, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.7687, + "eval_samples_per_second": 140.832, + "eval_steps_per_second": 2.202, + "step": 6 + }, + { + "epoch": 0.0006780974522910007, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 7 + }, + { + "epoch": 0.0006780974522910007, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.881, + "eval_samples_per_second": 140.766, + "eval_steps_per_second": 2.201, + "step": 7 + }, + { + "epoch": 0.0007749685169040007, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 8 + }, + { + "epoch": 0.0007749685169040007, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.2807, + "eval_samples_per_second": 141.711, + "eval_steps_per_second": 2.216, + "step": 8 + }, + { + "epoch": 0.0008718395815170009, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 9 + }, + { + "epoch": 0.0008718395815170009, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.8621, + "eval_samples_per_second": 141.366, + "eval_steps_per_second": 2.21, + "step": 9 + }, + { + "epoch": 0.000968710646130001, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9531, + "step": 10 + }, + { + "epoch": 0.000968710646130001, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.2707, + "eval_samples_per_second": 141.717, + "eval_steps_per_second": 2.216, + "step": 10 + }, + { + "epoch": 0.001065581710743001, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 11 + }, + { + "epoch": 0.001065581710743001, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.7639, + "eval_samples_per_second": 141.424, + "eval_steps_per_second": 2.211, + "step": 11 + }, + { + "epoch": 0.0011624527753560012, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 12 + }, + { + "epoch": 0.0011624527753560012, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 236.7358, + "eval_samples_per_second": 142.636, + "eval_steps_per_second": 2.23, + "step": 12 + }, + { + "epoch": 0.0012593238399690012, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9531, + "step": 13 + }, + { + "epoch": 0.0012593238399690012, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.6214, + "eval_samples_per_second": 141.509, + "eval_steps_per_second": 2.213, + "step": 13 + }, + { + "epoch": 0.0013561949045820013, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9609, + "step": 14 + }, + { + "epoch": 0.0013561949045820013, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.9769, + "eval_samples_per_second": 141.298, + "eval_steps_per_second": 2.209, + "step": 14 + }, + { + "epoch": 0.0014530659691950015, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 15 + }, + { + "epoch": 0.0014530659691950015, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.6023, + "eval_samples_per_second": 141.52, + "eval_steps_per_second": 2.213, + "step": 15 + }, + { + "epoch": 0.0015499370338080015, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9766, + "step": 16 + }, + { + "epoch": 0.0015499370338080015, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 238.5522, + "eval_samples_per_second": 141.55, + "eval_steps_per_second": 2.213, + "step": 16 + }, + { + "epoch": 0.0016468080984210016, + "grad_norm": 0.0, + "learning_rate": 1e-05, + "loss": 10.9688, + "step": 17 + }, + { + "epoch": 0.0016468080984210016, + "eval_accuracy": 4.851833655867371e-05, + "eval_loss": 10.96875, + "eval_runtime": 239.2771, + "eval_samples_per_second": 141.121, + "eval_steps_per_second": 2.207, + "step": 17 + }, + { + "epoch": 0.0017436791630340018, + "grad_norm": 3.9638593196868896, + "learning_rate": 9.999990312893539e-06, + "loss": 10.9609, + "step": 18 + }, + { + "epoch": 0.0017436791630340018, + "eval_accuracy": 0.0007322042282688151, + "eval_loss": 10.8828125, + "eval_runtime": 238.4478, + "eval_samples_per_second": 141.612, + "eval_steps_per_second": 2.214, + "step": 18 + }, + { + "epoch": 0.0018405502276470018, + "grad_norm": 3.9969630241394043, + "learning_rate": 9.999980625787079e-06, + "loss": 10.8906, + "step": 19 + }, + { + "epoch": 0.0018405502276470018, + "eval_accuracy": 0.00505525749297823, + "eval_loss": 10.8046875, + "eval_runtime": 237.763, + "eval_samples_per_second": 142.02, + "eval_steps_per_second": 2.221, + "step": 19 + }, + { + "epoch": 0.001937421292260002, + "grad_norm": 3.8709299564361572, + "learning_rate": 9.999970938680617e-06, + "loss": 10.8359, + "step": 20 + }, + { + "epoch": 0.001937421292260002, + "eval_accuracy": 0.011155251410816828, + "eval_loss": 10.71875, + "eval_runtime": 238.5172, + "eval_samples_per_second": 141.57, + "eval_steps_per_second": 2.214, + "step": 20 + }, + { + "epoch": 0.002034292356873002, + "grad_norm": 3.787830352783203, + "learning_rate": 9.999961251574155e-06, + "loss": 10.75, + "step": 21 + }, + { + "epoch": 0.002034292356873002, + "eval_accuracy": 0.017461824594575886, + "eval_loss": 10.6484375, + "eval_runtime": 238.2061, + "eval_samples_per_second": 141.755, + "eval_steps_per_second": 2.217, + "step": 21 + }, + { + "epoch": 0.002131163421486002, + "grad_norm": 3.8295083045959473, + "learning_rate": 9.999951564467694e-06, + "loss": 10.6719, + "step": 22 + }, + { + "epoch": 0.002131163421486002, + "eval_accuracy": 0.02801033625841584, + "eval_loss": 10.578125, + "eval_runtime": 236.835, + "eval_samples_per_second": 142.576, + "eval_steps_per_second": 2.229, + "step": 22 + }, + { + "epoch": 0.002228034486099002, + "grad_norm": 3.6312763690948486, + "learning_rate": 9.999941877361234e-06, + "loss": 10.6172, + "step": 23 + }, + { + "epoch": 0.002228034486099002, + "eval_accuracy": 0.03920626085709957, + "eval_loss": 10.5, + "eval_runtime": 237.4625, + "eval_samples_per_second": 142.199, + "eval_steps_per_second": 2.224, + "step": 23 + }, + { + "epoch": 0.0023249055507120024, + "grad_norm": 3.621922492980957, + "learning_rate": 9.999932190254772e-06, + "loss": 10.5391, + "step": 24 + }, + { + "epoch": 0.0023249055507120024, + "eval_accuracy": 0.044748322853401586, + "eval_loss": 10.4375, + "eval_runtime": 237.2944, + "eval_samples_per_second": 142.3, + "eval_steps_per_second": 2.225, + "step": 24 + }, + { + "epoch": 0.0024217766153250024, + "grad_norm": 3.4077281951904297, + "learning_rate": 9.99992250314831e-06, + "loss": 10.5078, + "step": 25 + }, + { + "epoch": 0.0024217766153250024, + "eval_accuracy": 0.04779985410339344, + "eval_loss": 10.3828125, + "eval_runtime": 237.7331, + "eval_samples_per_second": 142.037, + "eval_steps_per_second": 2.221, + "step": 25 + }, + { + "epoch": 0.0025186476799380023, + "grad_norm": 3.273934841156006, + "learning_rate": 9.99991281604185e-06, + "loss": 10.4609, + "step": 26 + }, + { + "epoch": 0.0025186476799380023, + "eval_accuracy": 0.0499438956072986, + "eval_loss": 10.3125, + "eval_runtime": 236.731, + "eval_samples_per_second": 142.639, + "eval_steps_per_second": 2.23, + "step": 26 + }, + { + "epoch": 0.0026155187445510027, + "grad_norm": 3.3044192790985107, + "learning_rate": 9.999903128935388e-06, + "loss": 10.3906, + "step": 27 + }, + { + "epoch": 0.0026155187445510027, + "eval_accuracy": 0.05109582976502101, + "eval_loss": 10.265625, + "eval_runtime": 235.9963, + "eval_samples_per_second": 143.083, + "eval_steps_per_second": 2.237, + "step": 27 + }, + { + "epoch": 0.0027123898091640027, + "grad_norm": 3.2339956760406494, + "learning_rate": 9.999893441828926e-06, + "loss": 10.3281, + "step": 28 + }, + { + "epoch": 0.0027123898091640027, + "eval_accuracy": 0.05213538433890046, + "eval_loss": 10.2109375, + "eval_runtime": 235.9613, + "eval_samples_per_second": 143.104, + "eval_steps_per_second": 2.238, + "step": 28 + }, + { + "epoch": 0.0028092608737770026, + "grad_norm": 3.157088279724121, + "learning_rate": 9.999883754722464e-06, + "loss": 10.2656, + "step": 29 + }, + { + "epoch": 0.0028092608737770026, + "eval_accuracy": 0.053102914079034114, + "eval_loss": 10.1640625, + "eval_runtime": 236.7001, + "eval_samples_per_second": 142.657, + "eval_steps_per_second": 2.231, + "step": 29 + }, + { + "epoch": 0.002906131938390003, + "grad_norm": 2.9515769481658936, + "learning_rate": 9.999874067616004e-06, + "loss": 10.25, + "step": 30 + }, + { + "epoch": 0.002906131938390003, + "eval_accuracy": 0.05368669735769892, + "eval_loss": 10.1171875, + "eval_runtime": 237.6075, + "eval_samples_per_second": 142.113, + "eval_steps_per_second": 2.222, + "step": 30 + }, + { + "epoch": 0.003003003003003003, + "grad_norm": 2.8982396125793457, + "learning_rate": 9.999864380509543e-06, + "loss": 10.2031, + "step": 31 + }, + { + "epoch": 0.003003003003003003, + "eval_accuracy": 0.05444738729191865, + "eval_loss": 10.0703125, + "eval_runtime": 236.3017, + "eval_samples_per_second": 142.898, + "eval_steps_per_second": 2.234, + "step": 31 + }, + { + "epoch": 0.003099874067616003, + "grad_norm": 2.802349090576172, + "learning_rate": 9.999854693403081e-06, + "loss": 10.1641, + "step": 32 + }, + { + "epoch": 0.003099874067616003, + "eval_accuracy": 0.05520547182620385, + "eval_loss": 10.03125, + "eval_runtime": 236.5083, + "eval_samples_per_second": 142.773, + "eval_steps_per_second": 2.232, + "step": 32 + }, + { + "epoch": 0.0031967451322290033, + "grad_norm": 2.7052364349365234, + "learning_rate": 9.99984500629662e-06, + "loss": 10.125, + "step": 33 + }, + { + "epoch": 0.0031967451322290033, + "eval_accuracy": 0.05577098835643875, + "eval_loss": 9.9921875, + "eval_runtime": 236.8657, + "eval_samples_per_second": 142.558, + "eval_steps_per_second": 2.229, + "step": 33 + }, + { + "epoch": 0.0032936161968420033, + "grad_norm": 2.640915632247925, + "learning_rate": 9.99983531919016e-06, + "loss": 10.0859, + "step": 34 + }, + { + "epoch": 0.0032936161968420033, + "eval_accuracy": 0.0562093903187565, + "eval_loss": 9.9609375, + "eval_runtime": 236.6838, + "eval_samples_per_second": 142.667, + "eval_steps_per_second": 2.231, + "step": 34 + }, + { + "epoch": 0.0033904872614550032, + "grad_norm": 2.5900304317474365, + "learning_rate": 9.999825632083697e-06, + "loss": 10.0391, + "step": 35 + }, + { + "epoch": 0.0033904872614550032, + "eval_accuracy": 0.05660072138892365, + "eval_loss": 9.921875, + "eval_runtime": 236.5335, + "eval_samples_per_second": 142.758, + "eval_steps_per_second": 2.232, + "step": 35 + }, + { + "epoch": 0.0034873583260680036, + "grad_norm": 2.493401288986206, + "learning_rate": 9.999815944977235e-06, + "loss": 10.0156, + "step": 36 + }, + { + "epoch": 0.0034873583260680036, + "eval_accuracy": 0.0568301702764917, + "eval_loss": 9.890625, + "eval_runtime": 237.1506, + "eval_samples_per_second": 142.386, + "eval_steps_per_second": 2.226, + "step": 36 + }, + { + "epoch": 0.0035842293906810036, + "grad_norm": 2.489300012588501, + "learning_rate": 9.999806257870775e-06, + "loss": 9.9609, + "step": 37 + }, + { + "epoch": 0.0035842293906810036, + "eval_accuracy": 0.056685860069006624, + "eval_loss": 9.859375, + "eval_runtime": 236.5729, + "eval_samples_per_second": 142.734, + "eval_steps_per_second": 2.232, + "step": 37 + }, + { + "epoch": 0.0036811004552940035, + "grad_norm": 2.457721471786499, + "learning_rate": 9.999796570764313e-06, + "loss": 9.9141, + "step": 38 + }, + { + "epoch": 0.0036811004552940035, + "eval_accuracy": 0.05657735963617732, + "eval_loss": 9.8359375, + "eval_runtime": 236.757, + "eval_samples_per_second": 142.623, + "eval_steps_per_second": 2.23, + "step": 38 + }, + { + "epoch": 0.003777971519907004, + "grad_norm": 2.4300434589385986, + "learning_rate": 9.999786883657853e-06, + "loss": 9.875, + "step": 39 + }, + { + "epoch": 0.003777971519907004, + "eval_accuracy": 0.056777425402261446, + "eval_loss": 9.8046875, + "eval_runtime": 236.7279, + "eval_samples_per_second": 142.641, + "eval_steps_per_second": 2.23, + "step": 39 + }, + { + "epoch": 0.003874842584520004, + "grad_norm": 2.4308087825775146, + "learning_rate": 9.99977719655139e-06, + "loss": 9.8672, + "step": 40 + }, + { + "epoch": 0.003874842584520004, + "eval_accuracy": 0.05689365518822987, + "eval_loss": 9.78125, + "eval_runtime": 236.8414, + "eval_samples_per_second": 142.572, + "eval_steps_per_second": 2.229, + "step": 40 + }, + { + "epoch": 0.003971713649133004, + "grad_norm": 2.248959541320801, + "learning_rate": 9.99976750944493e-06, + "loss": 9.8438, + "step": 41 + }, + { + "epoch": 0.003971713649133004, + "eval_accuracy": 0.05678616796648622, + "eval_loss": 9.7578125, + "eval_runtime": 237.8773, + "eval_samples_per_second": 141.951, + "eval_steps_per_second": 2.22, + "step": 41 + }, + { + "epoch": 0.004068584713746004, + "grad_norm": 2.3188998699188232, + "learning_rate": 9.999757822338468e-06, + "loss": 9.7969, + "step": 42 + }, + { + "epoch": 0.004068584713746004, + "eval_accuracy": 0.05653222831953354, + "eval_loss": 9.734375, + "eval_runtime": 237.6567, + "eval_samples_per_second": 142.083, + "eval_steps_per_second": 2.222, + "step": 42 + }, + { + "epoch": 0.004165455778359004, + "grad_norm": 2.1342954635620117, + "learning_rate": 9.999748135232007e-06, + "loss": 9.8203, + "step": 43 + }, + { + "epoch": 0.004165455778359004, + "eval_accuracy": 0.056402595198346346, + "eval_loss": 9.7109375, + "eval_runtime": 238.2373, + "eval_samples_per_second": 141.737, + "eval_steps_per_second": 2.216, + "step": 43 + }, + { + "epoch": 0.004262326842972004, + "grad_norm": 2.0969340801239014, + "learning_rate": 9.999738448125546e-06, + "loss": 9.7891, + "step": 44 + }, + { + "epoch": 0.004262326842972004, + "eval_accuracy": 0.05635836129723557, + "eval_loss": 9.6875, + "eval_runtime": 237.2632, + "eval_samples_per_second": 142.319, + "eval_steps_per_second": 2.225, + "step": 44 + }, + { + "epoch": 0.004359197907585004, + "grad_norm": 2.200792074203491, + "learning_rate": 9.999728761019084e-06, + "loss": 9.7031, + "step": 45 + }, + { + "epoch": 0.004359197907585004, + "eval_accuracy": 0.05659519215128481, + "eval_loss": 9.671875, + "eval_runtime": 238.714, + "eval_samples_per_second": 141.454, + "eval_steps_per_second": 2.212, + "step": 45 + }, + { + "epoch": 0.004456068972198004, + "grad_norm": 2.0903360843658447, + "learning_rate": 9.999719073912622e-06, + "loss": 9.7344, + "step": 46 + }, + { + "epoch": 0.004456068972198004, + "eval_accuracy": 0.056926830614062944, + "eval_loss": 9.6484375, + "eval_runtime": 238.1183, + "eval_samples_per_second": 141.808, + "eval_steps_per_second": 2.217, + "step": 46 + }, + { + "epoch": 0.004552940036811005, + "grad_norm": 2.027561664581299, + "learning_rate": 9.999709386806162e-06, + "loss": 9.7266, + "step": 47 + }, + { + "epoch": 0.004552940036811005, + "eval_accuracy": 0.05733822326372602, + "eval_loss": 9.6328125, + "eval_runtime": 238.4469, + "eval_samples_per_second": 141.612, + "eval_steps_per_second": 2.214, + "step": 47 + }, + { + "epoch": 0.004649811101424005, + "grad_norm": 1.9840859174728394, + "learning_rate": 9.9996996996997e-06, + "loss": 9.7031, + "step": 48 + }, + { + "epoch": 0.004649811101424005, + "eval_accuracy": 0.057925625153411014, + "eval_loss": 9.6171875, + "eval_runtime": 239.2866, + "eval_samples_per_second": 141.115, + "eval_steps_per_second": 2.207, + "step": 48 + }, + { + "epoch": 0.004746682166037005, + "grad_norm": 1.8907567262649536, + "learning_rate": 9.99969001259324e-06, + "loss": 9.7109, + "step": 49 + }, + { + "epoch": 0.004746682166037005, + "eval_accuracy": 0.05849756833681777, + "eval_loss": 9.6015625, + "eval_runtime": 237.5376, + "eval_samples_per_second": 142.154, + "eval_steps_per_second": 2.223, + "step": 49 + }, + { + "epoch": 0.004843553230650005, + "grad_norm": 1.9789716005325317, + "learning_rate": 9.999680325486778e-06, + "loss": 9.6406, + "step": 50 + }, + { + "epoch": 0.004843553230650005, + "eval_accuracy": 0.059110966328071786, + "eval_loss": 9.578125, + "eval_runtime": 238.4868, + "eval_samples_per_second": 141.589, + "eval_steps_per_second": 2.214, + "step": 50 + }, + { + "epoch": 0.004940424295263005, + "grad_norm": 1.8518751859664917, + "learning_rate": 9.999670638380316e-06, + "loss": 9.6797, + "step": 51 + }, + { + "epoch": 0.004940424295263005, + "eval_accuracy": 0.059745178569913925, + "eval_loss": 9.5625, + "eval_runtime": 237.9086, + "eval_samples_per_second": 141.933, + "eval_steps_per_second": 2.219, + "step": 51 + }, + { + "epoch": 0.005037295359876005, + "grad_norm": 1.9054638147354126, + "learning_rate": 9.999660951273856e-06, + "loss": 9.6328, + "step": 52 + }, + { + "epoch": 0.005037295359876005, + "eval_accuracy": 0.06045813178755534, + "eval_loss": 9.546875, + "eval_runtime": 238.5328, + "eval_samples_per_second": 141.561, + "eval_steps_per_second": 2.214, + "step": 52 + }, + { + "epoch": 0.0051341664244890055, + "grad_norm": 1.9086819887161255, + "learning_rate": 9.999651264167394e-06, + "loss": 9.6172, + "step": 53 + }, + { + "epoch": 0.0051341664244890055, + "eval_accuracy": 0.06115973704103745, + "eval_loss": 9.53125, + "eval_runtime": 239.0323, + "eval_samples_per_second": 141.265, + "eval_steps_per_second": 2.209, + "step": 53 + }, + { + "epoch": 0.0052310374891020054, + "grad_norm": 1.8585758209228516, + "learning_rate": 9.999641577060932e-06, + "loss": 9.6172, + "step": 54 + }, + { + "epoch": 0.0052310374891020054, + "eval_accuracy": 0.06154695736908567, + "eval_loss": 9.5234375, + "eval_runtime": 237.7379, + "eval_samples_per_second": 142.035, + "eval_steps_per_second": 2.221, + "step": 54 + }, + { + "epoch": 0.005327908553715005, + "grad_norm": 1.8926104307174683, + "learning_rate": 9.999631889954471e-06, + "loss": 9.5703, + "step": 55 + }, + { + "epoch": 0.005327908553715005, + "eval_accuracy": 0.06174404139968916, + "eval_loss": 9.5078125, + "eval_runtime": 238.0821, + "eval_samples_per_second": 141.829, + "eval_steps_per_second": 2.218, + "step": 55 + }, + { + "epoch": 0.005424779618328005, + "grad_norm": 1.8241984844207764, + "learning_rate": 9.999622202848011e-06, + "loss": 9.5781, + "step": 56 + }, + { + "epoch": 0.005424779618328005, + "eval_accuracy": 0.061843017648313334, + "eval_loss": 9.4921875, + "eval_runtime": 237.2046, + "eval_samples_per_second": 142.354, + "eval_steps_per_second": 2.226, + "step": 56 + }, + { + "epoch": 0.005521650682941005, + "grad_norm": 1.7987343072891235, + "learning_rate": 9.999612515741549e-06, + "loss": 9.5938, + "step": 57 + }, + { + "epoch": 0.005521650682941005, + "eval_accuracy": 0.0619944782311743, + "eval_loss": 9.4765625, + "eval_runtime": 238.3243, + "eval_samples_per_second": 141.685, + "eval_steps_per_second": 2.215, + "step": 57 + }, + { + "epoch": 0.005618521747554005, + "grad_norm": 1.8513528108596802, + "learning_rate": 9.999602828635087e-06, + "loss": 9.5391, + "step": 58 + }, + { + "epoch": 0.005618521747554005, + "eval_accuracy": 0.06205043643199048, + "eval_loss": 9.46875, + "eval_runtime": 236.9136, + "eval_samples_per_second": 142.529, + "eval_steps_per_second": 2.229, + "step": 58 + }, + { + "epoch": 0.005715392812167006, + "grad_norm": 1.901055932044983, + "learning_rate": 9.999593141528627e-06, + "loss": 9.4922, + "step": 59 + }, + { + "epoch": 0.005715392812167006, + "eval_accuracy": 0.06204551512100302, + "eval_loss": 9.453125, + "eval_runtime": 240.0178, + "eval_samples_per_second": 140.685, + "eval_steps_per_second": 2.2, + "step": 59 + }, + { + "epoch": 0.005812263876780006, + "grad_norm": 1.8602513074874878, + "learning_rate": 9.999583454422165e-06, + "loss": 9.4688, + "step": 60 + }, + { + "epoch": 0.005812263876780006, + "eval_accuracy": 0.062001570708773865, + "eval_loss": 9.4375, + "eval_runtime": 239.415, + "eval_samples_per_second": 141.04, + "eval_steps_per_second": 2.205, + "step": 60 + }, + { + "epoch": 0.005909134941393006, + "grad_norm": 1.8280858993530273, + "learning_rate": 9.999573767315703e-06, + "loss": 9.4922, + "step": 61 + }, + { + "epoch": 0.005909134941393006, + "eval_accuracy": 0.06202125595272369, + "eval_loss": 9.4296875, + "eval_runtime": 240.2145, + "eval_samples_per_second": 140.57, + "eval_steps_per_second": 2.198, + "step": 61 + }, + { + "epoch": 0.006006006006006006, + "grad_norm": 1.8284739255905151, + "learning_rate": 9.999564080209243e-06, + "loss": 9.4609, + "step": 62 + }, + { + "epoch": 0.006006006006006006, + "eval_accuracy": 0.06204618094543074, + "eval_loss": 9.4140625, + "eval_runtime": 240.548, + "eval_samples_per_second": 140.375, + "eval_steps_per_second": 2.195, + "step": 62 + }, + { + "epoch": 0.006102877070619006, + "grad_norm": 1.8668478727340698, + "learning_rate": 9.99955439310278e-06, + "loss": 9.4297, + "step": 63 + }, + { + "epoch": 0.006102877070619006, + "eval_accuracy": 0.061995375646707304, + "eval_loss": 9.40625, + "eval_runtime": 238.875, + "eval_samples_per_second": 141.358, + "eval_steps_per_second": 2.21, + "step": 63 + }, + { + "epoch": 0.006199748135232006, + "grad_norm": 1.7616581916809082, + "learning_rate": 9.99954470599632e-06, + "loss": 9.4844, + "step": 64 + }, + { + "epoch": 0.006199748135232006, + "eval_accuracy": 0.062048844243141596, + "eval_loss": 9.390625, + "eval_runtime": 238.455, + "eval_samples_per_second": 141.607, + "eval_steps_per_second": 2.214, + "step": 64 + }, + { + "epoch": 0.006296619199845007, + "grad_norm": 1.7911943197250366, + "learning_rate": 9.999535018889858e-06, + "loss": 9.4531, + "step": 65 + }, + { + "epoch": 0.006296619199845007, + "eval_accuracy": 0.06223356709850013, + "eval_loss": 9.3828125, + "eval_runtime": 236.8696, + "eval_samples_per_second": 142.555, + "eval_steps_per_second": 2.229, + "step": 65 + }, + { + "epoch": 0.006393490264458007, + "grad_norm": 1.7897166013717651, + "learning_rate": 9.999525331783398e-06, + "loss": 9.4375, + "step": 66 + }, + { + "epoch": 0.006393490264458007, + "eval_accuracy": 0.06252389549787181, + "eval_loss": 9.3671875, + "eval_runtime": 238.3072, + "eval_samples_per_second": 141.695, + "eval_steps_per_second": 2.216, + "step": 66 + }, + { + "epoch": 0.006490361329071007, + "grad_norm": 1.7542698383331299, + "learning_rate": 9.999515644676936e-06, + "loss": 9.4375, + "step": 67 + }, + { + "epoch": 0.006490361329071007, + "eval_accuracy": 0.06279815726431386, + "eval_loss": 9.359375, + "eval_runtime": 238.8868, + "eval_samples_per_second": 141.351, + "eval_steps_per_second": 2.21, + "step": 67 + }, + { + "epoch": 0.0065872323936840066, + "grad_norm": 1.7762055397033691, + "learning_rate": 9.999505957570474e-06, + "loss": 9.3984, + "step": 68 + }, + { + "epoch": 0.0065872323936840066, + "eval_accuracy": 0.06302155583425616, + "eval_loss": 9.34375, + "eval_runtime": 238.2147, + "eval_samples_per_second": 141.75, + "eval_steps_per_second": 2.216, + "step": 68 + }, + { + "epoch": 0.0066841034582970065, + "grad_norm": 1.7549471855163574, + "learning_rate": 9.999496270464012e-06, + "loss": 9.4062, + "step": 69 + }, + { + "epoch": 0.0066841034582970065, + "eval_accuracy": 0.0631751296859529, + "eval_loss": 9.3359375, + "eval_runtime": 238.9606, + "eval_samples_per_second": 141.308, + "eval_steps_per_second": 2.21, + "step": 69 + }, + { + "epoch": 0.0067809745229100065, + "grad_norm": 1.7370997667312622, + "learning_rate": 9.999486583357552e-06, + "loss": 9.3984, + "step": 70 + }, + { + "epoch": 0.0067809745229100065, + "eval_accuracy": 0.06327500335011008, + "eval_loss": 9.3203125, + "eval_runtime": 238.5419, + "eval_samples_per_second": 141.556, + "eval_steps_per_second": 2.213, + "step": 70 + }, + { + "epoch": 0.006877845587523007, + "grad_norm": 1.6883249282836914, + "learning_rate": 9.99947689625109e-06, + "loss": 9.4375, + "step": 71 + }, + { + "epoch": 0.006877845587523007, + "eval_accuracy": 0.06334149894621705, + "eval_loss": 9.3125, + "eval_runtime": 238.5418, + "eval_samples_per_second": 141.556, + "eval_steps_per_second": 2.213, + "step": 71 + }, + { + "epoch": 0.006974716652136007, + "grad_norm": 1.7424453496932983, + "learning_rate": 9.99946720914463e-06, + "loss": 9.3828, + "step": 72 + }, + { + "epoch": 0.006974716652136007, + "eval_accuracy": 0.0633868039561898, + "eval_loss": 9.3046875, + "eval_runtime": 237.7375, + "eval_samples_per_second": 142.035, + "eval_steps_per_second": 2.221, + "step": 72 + }, + { + "epoch": 0.007071587716749007, + "grad_norm": 1.744436264038086, + "learning_rate": 9.999457522038168e-06, + "loss": 9.3594, + "step": 73 + }, + { + "epoch": 0.007071587716749007, + "eval_accuracy": 0.06341806875540422, + "eval_loss": 9.2890625, + "eval_runtime": 238.0776, + "eval_samples_per_second": 141.832, + "eval_steps_per_second": 2.218, + "step": 73 + }, + { + "epoch": 0.007168458781362007, + "grad_norm": 1.7263447046279907, + "learning_rate": 9.999447834931707e-06, + "loss": 9.3438, + "step": 74 + }, + { + "epoch": 0.007168458781362007, + "eval_accuracy": 0.06344229897479539, + "eval_loss": 9.28125, + "eval_runtime": 239.9491, + "eval_samples_per_second": 140.726, + "eval_steps_per_second": 2.2, + "step": 74 + }, + { + "epoch": 0.007265329845975007, + "grad_norm": 1.6880813837051392, + "learning_rate": 9.999438147825245e-06, + "loss": 9.3672, + "step": 75 + }, + { + "epoch": 0.007265329845975007, + "eval_accuracy": 0.06342368483970755, + "eval_loss": 9.2734375, + "eval_runtime": 237.9155, + "eval_samples_per_second": 141.929, + "eval_steps_per_second": 2.219, + "step": 75 + }, + { + "epoch": 0.007362200910588007, + "grad_norm": 1.7534254789352417, + "learning_rate": 9.999428460718784e-06, + "loss": 9.3125, + "step": 76 + }, + { + "epoch": 0.007362200910588007, + "eval_accuracy": 0.06337450067872116, + "eval_loss": 9.2578125, + "eval_runtime": 239.6783, + "eval_samples_per_second": 140.885, + "eval_steps_per_second": 2.203, + "step": 76 + }, + { + "epoch": 0.007459071975201007, + "grad_norm": 1.7223541736602783, + "learning_rate": 9.999418773612323e-06, + "loss": 9.3047, + "step": 77 + }, + { + "epoch": 0.007459071975201007, + "eval_accuracy": 0.06325945779716735, + "eval_loss": 9.25, + "eval_runtime": 238.6926, + "eval_samples_per_second": 141.466, + "eval_steps_per_second": 2.212, + "step": 77 + }, + { + "epoch": 0.007555943039814008, + "grad_norm": 1.7189525365829468, + "learning_rate": 9.999409086505861e-06, + "loss": 9.2969, + "step": 78 + }, + { + "epoch": 0.007555943039814008, + "eval_accuracy": 0.0631598736218918, + "eval_loss": 9.2421875, + "eval_runtime": 237.6208, + "eval_samples_per_second": 142.105, + "eval_steps_per_second": 2.222, + "step": 78 + }, + { + "epoch": 0.007652814104427008, + "grad_norm": 1.7101792097091675, + "learning_rate": 9.9993993993994e-06, + "loss": 9.2891, + "step": 79 + }, + { + "epoch": 0.007652814104427008, + "eval_accuracy": 0.06305487600453004, + "eval_loss": 9.2265625, + "eval_runtime": 239.1168, + "eval_samples_per_second": 141.216, + "eval_steps_per_second": 2.208, + "step": 79 + }, + { + "epoch": 0.007749685169040008, + "grad_norm": 1.7495548725128174, + "learning_rate": 9.999389712292939e-06, + "loss": 9.2812, + "step": 80 + }, + { + "epoch": 0.007749685169040008, + "eval_accuracy": 0.06309847303010126, + "eval_loss": 9.21875, + "eval_runtime": 238.7884, + "eval_samples_per_second": 141.41, + "eval_steps_per_second": 2.211, + "step": 80 + }, + { + "epoch": 0.007846556233653008, + "grad_norm": 1.6896053552627563, + "learning_rate": 9.999380025186479e-06, + "loss": 9.2656, + "step": 81 + }, + { + "epoch": 0.007846556233653008, + "eval_accuracy": 0.0631880698389611, + "eval_loss": 9.2109375, + "eval_runtime": 240.0662, + "eval_samples_per_second": 140.657, + "eval_steps_per_second": 2.199, + "step": 81 + }, + { + "epoch": 0.007943427298266009, + "grad_norm": 1.7166608572006226, + "learning_rate": 9.999370338080017e-06, + "loss": 9.2422, + "step": 82 + }, + { + "epoch": 0.007943427298266009, + "eval_accuracy": 0.06330250479386351, + "eval_loss": 9.203125, + "eval_runtime": 238.0584, + "eval_samples_per_second": 141.843, + "eval_steps_per_second": 2.218, + "step": 82 + }, + { + "epoch": 0.008040298362879008, + "grad_norm": 1.6938972473144531, + "learning_rate": 9.999360650973555e-06, + "loss": 9.2656, + "step": 83 + }, + { + "epoch": 0.008040298362879008, + "eval_accuracy": 0.06352989831037209, + "eval_loss": 9.1875, + "eval_runtime": 240.419, + "eval_samples_per_second": 140.451, + "eval_steps_per_second": 2.196, + "step": 83 + }, + { + "epoch": 0.008137169427492008, + "grad_norm": 1.6488450765609741, + "learning_rate": 9.999350963867095e-06, + "loss": 9.25, + "step": 84 + }, + { + "epoch": 0.008137169427492008, + "eval_accuracy": 0.06372730077874536, + "eval_loss": 9.1796875, + "eval_runtime": 239.4979, + "eval_samples_per_second": 140.991, + "eval_steps_per_second": 2.205, + "step": 84 + }, + { + "epoch": 0.008234040492105008, + "grad_norm": 1.695817470550537, + "learning_rate": 9.999341276760633e-06, + "loss": 9.2344, + "step": 85 + }, + { + "epoch": 0.008234040492105008, + "eval_accuracy": 0.06391222627632101, + "eval_loss": 9.171875, + "eval_runtime": 237.1194, + "eval_samples_per_second": 142.405, + "eval_steps_per_second": 2.227, + "step": 85 + }, + { + "epoch": 0.008330911556718008, + "grad_norm": 1.6468489170074463, + "learning_rate": 9.99933158965417e-06, + "loss": 9.2266, + "step": 86 + }, + { + "epoch": 0.008330911556718008, + "eval_accuracy": 0.0640310325133358, + "eval_loss": 9.15625, + "eval_runtime": 238.4317, + "eval_samples_per_second": 141.621, + "eval_steps_per_second": 2.214, + "step": 86 + }, + { + "epoch": 0.00842778262133101, + "grad_norm": 1.5998897552490234, + "learning_rate": 9.99932190254771e-06, + "loss": 9.25, + "step": 87 + }, + { + "epoch": 0.00842778262133101, + "eval_accuracy": 0.06412291628436041, + "eval_loss": 9.1484375, + "eval_runtime": 239.3988, + "eval_samples_per_second": 141.049, + "eval_steps_per_second": 2.206, + "step": 87 + }, + { + "epoch": 0.008524653685944008, + "grad_norm": 1.74087655544281, + "learning_rate": 9.999312215441248e-06, + "loss": 9.1406, + "step": 88 + }, + { + "epoch": 0.008524653685944008, + "eval_accuracy": 0.06414216729498781, + "eval_loss": 9.140625, + "eval_runtime": 239.1559, + "eval_samples_per_second": 141.192, + "eval_steps_per_second": 2.208, + "step": 88 + }, + { + "epoch": 0.008621524750557009, + "grad_norm": 1.723071813583374, + "learning_rate": 9.999302528334788e-06, + "loss": 9.1562, + "step": 89 + }, + { + "epoch": 0.008621524750557009, + "eval_accuracy": 0.06415910239456228, + "eval_loss": 9.1328125, + "eval_runtime": 239.2993, + "eval_samples_per_second": 141.108, + "eval_steps_per_second": 2.206, + "step": 89 + }, + { + "epoch": 0.008718395815170008, + "grad_norm": 1.605566143989563, + "learning_rate": 9.999292841228326e-06, + "loss": 9.2031, + "step": 90 + }, + { + "epoch": 0.008718395815170008, + "eval_accuracy": 0.0641378828595399, + "eval_loss": 9.1171875, + "eval_runtime": 239.3127, + "eval_samples_per_second": 141.1, + "eval_steps_per_second": 2.206, + "step": 90 + }, + { + "epoch": 0.008815266879783009, + "grad_norm": 1.699105143547058, + "learning_rate": 9.999283154121864e-06, + "loss": 9.1406, + "step": 91 + }, + { + "epoch": 0.008815266879783009, + "eval_accuracy": 0.06416199728337843, + "eval_loss": 9.109375, + "eval_runtime": 239.2239, + "eval_samples_per_second": 141.152, + "eval_steps_per_second": 2.207, + "step": 91 + }, + { + "epoch": 0.008912137944396008, + "grad_norm": 1.6730599403381348, + "learning_rate": 9.999273467015404e-06, + "loss": 9.1406, + "step": 92 + }, + { + "epoch": 0.008912137944396008, + "eval_accuracy": 0.06426725544073365, + "eval_loss": 9.1015625, + "eval_runtime": 239.2839, + "eval_samples_per_second": 141.117, + "eval_steps_per_second": 2.207, + "step": 92 + }, + { + "epoch": 0.009009009009009009, + "grad_norm": 1.6537282466888428, + "learning_rate": 9.999263779908942e-06, + "loss": 9.1406, + "step": 93 + }, + { + "epoch": 0.009009009009009009, + "eval_accuracy": 0.06438559849553786, + "eval_loss": 9.09375, + "eval_runtime": 237.9124, + "eval_samples_per_second": 141.93, + "eval_steps_per_second": 2.219, + "step": 93 + }, + { + "epoch": 0.00910588007362201, + "grad_norm": 1.648465871810913, + "learning_rate": 9.99925409280248e-06, + "loss": 9.1328, + "step": 94 + }, + { + "epoch": 0.00910588007362201, + "eval_accuracy": 0.06439923342186193, + "eval_loss": 9.078125, + "eval_runtime": 239.3262, + "eval_samples_per_second": 141.092, + "eval_steps_per_second": 2.206, + "step": 94 + }, + { + "epoch": 0.009202751138235009, + "grad_norm": 1.6511099338531494, + "learning_rate": 9.99924440569602e-06, + "loss": 9.125, + "step": 95 + }, + { + "epoch": 0.009202751138235009, + "eval_accuracy": 0.06449600955498583, + "eval_loss": 9.0703125, + "eval_runtime": 238.7857, + "eval_samples_per_second": 141.411, + "eval_steps_per_second": 2.211, + "step": 95 + }, + { + "epoch": 0.00929962220284801, + "grad_norm": 1.6301484107971191, + "learning_rate": 9.999234718589558e-06, + "loss": 9.1016, + "step": 96 + }, + { + "epoch": 0.00929962220284801, + "eval_accuracy": 0.0646362669181283, + "eval_loss": 9.0625, + "eval_runtime": 238.0729, + "eval_samples_per_second": 141.835, + "eval_steps_per_second": 2.218, + "step": 96 + }, + { + "epoch": 0.009396493267461009, + "grad_norm": 1.5811512470245361, + "learning_rate": 9.999225031483096e-06, + "loss": 9.125, + "step": 97 + }, + { + "epoch": 0.009396493267461009, + "eval_accuracy": 0.06484397519068705, + "eval_loss": 9.0546875, + "eval_runtime": 238.6104, + "eval_samples_per_second": 141.515, + "eval_steps_per_second": 2.213, + "step": 97 + }, + { + "epoch": 0.00949336433207401, + "grad_norm": 1.6737486124038696, + "learning_rate": 9.999215344376635e-06, + "loss": 9.0625, + "step": 98 + }, + { + "epoch": 0.00949336433207401, + "eval_accuracy": 0.06518476150212422, + "eval_loss": 9.0390625, + "eval_runtime": 238.844, + "eval_samples_per_second": 141.377, + "eval_steps_per_second": 2.211, + "step": 98 + }, + { + "epoch": 0.00959023539668701, + "grad_norm": 1.6142433881759644, + "learning_rate": 9.999205657270175e-06, + "loss": 9.0859, + "step": 99 + }, + { + "epoch": 0.00959023539668701, + "eval_accuracy": 0.06548032965025313, + "eval_loss": 9.03125, + "eval_runtime": 238.064, + "eval_samples_per_second": 141.84, + "eval_steps_per_second": 2.218, + "step": 99 + }, + { + "epoch": 0.00968710646130001, + "grad_norm": 1.640156865119934, + "learning_rate": 9.999195970163713e-06, + "loss": 9.0547, + "step": 100 + }, + { + "epoch": 0.00968710646130001, + "eval_accuracy": 0.06569275659158222, + "eval_loss": 9.0234375, + "eval_runtime": 238.6131, + "eval_samples_per_second": 141.514, + "eval_steps_per_second": 2.213, + "step": 100 + }, + { + "epoch": 0.00978397752591301, + "grad_norm": 1.6266826391220093, + "learning_rate": 9.999186283057251e-06, + "loss": 9.0547, + "step": 101 + }, + { + "epoch": 0.00978397752591301, + "eval_accuracy": 0.06578165862712619, + "eval_loss": 9.015625, + "eval_runtime": 239.9035, + "eval_samples_per_second": 140.752, + "eval_steps_per_second": 2.201, + "step": 101 + }, + { + "epoch": 0.00988084859052601, + "grad_norm": 1.5783159732818604, + "learning_rate": 9.999176595950791e-06, + "loss": 9.0625, + "step": 102 + }, + { + "epoch": 0.00988084859052601, + "eval_accuracy": 0.0659039097818322, + "eval_loss": 9.0078125, + "eval_runtime": 239.5936, + "eval_samples_per_second": 140.934, + "eval_steps_per_second": 2.204, + "step": 102 + }, + { + "epoch": 0.00997771965513901, + "grad_norm": 1.6107426881790161, + "learning_rate": 9.999166908844329e-06, + "loss": 9.0547, + "step": 103 + }, + { + "epoch": 0.00997771965513901, + "eval_accuracy": 0.0660996332146921, + "eval_loss": 8.9921875, + "eval_runtime": 240.4185, + "eval_samples_per_second": 140.451, + "eval_steps_per_second": 2.196, + "step": 103 + }, + { + "epoch": 0.01007459071975201, + "grad_norm": 1.6132723093032837, + "learning_rate": 9.999157221737867e-06, + "loss": 9.0156, + "step": 104 + }, + { + "epoch": 0.01007459071975201, + "eval_accuracy": 0.06618155856818915, + "eval_loss": 8.984375, + "eval_runtime": 238.4229, + "eval_samples_per_second": 141.627, + "eval_steps_per_second": 2.215, + "step": 104 + }, + { + "epoch": 0.01017146178436501, + "grad_norm": 1.594551682472229, + "learning_rate": 9.999147534631407e-06, + "loss": 9.0391, + "step": 105 + }, + { + "epoch": 0.01017146178436501, + "eval_accuracy": 0.06635901525261914, + "eval_loss": 8.9765625, + "eval_runtime": 239.2842, + "eval_samples_per_second": 141.117, + "eval_steps_per_second": 2.207, + "step": 105 + }, + { + "epoch": 0.010268332848978011, + "grad_norm": 1.6009005308151245, + "learning_rate": 9.999137847524946e-06, + "loss": 9.0234, + "step": 106 + }, + { + "epoch": 0.010268332848978011, + "eval_accuracy": 0.06637285282116034, + "eval_loss": 8.96875, + "eval_runtime": 239.6129, + "eval_samples_per_second": 140.923, + "eval_steps_per_second": 2.204, + "step": 106 + }, + { + "epoch": 0.01036520391359101, + "grad_norm": 1.5228526592254639, + "learning_rate": 9.999128160418484e-06, + "loss": 9.0234, + "step": 107 + }, + { + "epoch": 0.01036520391359101, + "eval_accuracy": 0.06640226489153242, + "eval_loss": 8.9609375, + "eval_runtime": 240.652, + "eval_samples_per_second": 140.315, + "eval_steps_per_second": 2.194, + "step": 107 + }, + { + "epoch": 0.010462074978204011, + "grad_norm": 1.6139883995056152, + "learning_rate": 9.999118473312022e-06, + "loss": 8.9766, + "step": 108 + }, + { + "epoch": 0.010462074978204011, + "eval_accuracy": 0.06641254174682976, + "eval_loss": 8.9453125, + "eval_runtime": 241.0995, + "eval_samples_per_second": 140.054, + "eval_steps_per_second": 2.19, + "step": 108 + }, + { + "epoch": 0.01055894604281701, + "grad_norm": 1.5845446586608887, + "learning_rate": 9.999108786205562e-06, + "loss": 8.9922, + "step": 109 + }, + { + "epoch": 0.01055894604281701, + "eval_accuracy": 0.06653754304591111, + "eval_loss": 8.9375, + "eval_runtime": 241.1972, + "eval_samples_per_second": 139.997, + "eval_steps_per_second": 2.189, + "step": 109 + }, + { + "epoch": 0.01065581710743001, + "grad_norm": 1.6032410860061646, + "learning_rate": 9.9990990990991e-06, + "loss": 8.9453, + "step": 110 + }, + { + "epoch": 0.01065581710743001, + "eval_accuracy": 0.06648474027390454, + "eval_loss": 8.9296875, + "eval_runtime": 240.7345, + "eval_samples_per_second": 140.267, + "eval_steps_per_second": 2.193, + "step": 110 + }, + { + "epoch": 0.010752688172043012, + "grad_norm": 1.5953596830368042, + "learning_rate": 9.999089411992638e-06, + "loss": 8.9609, + "step": 111 + }, + { + "epoch": 0.010752688172043012, + "eval_accuracy": 0.06636981318790339, + "eval_loss": 8.921875, + "eval_runtime": 241.4759, + "eval_samples_per_second": 139.836, + "eval_steps_per_second": 2.187, + "step": 111 + }, + { + "epoch": 0.01084955923665601, + "grad_norm": 1.5376003980636597, + "learning_rate": 9.999079724886176e-06, + "loss": 8.9766, + "step": 112 + }, + { + "epoch": 0.01084955923665601, + "eval_accuracy": 0.06635956528149421, + "eval_loss": 8.9140625, + "eval_runtime": 238.6698, + "eval_samples_per_second": 141.48, + "eval_steps_per_second": 2.212, + "step": 112 + }, + { + "epoch": 0.010946430301269012, + "grad_norm": 1.5216182470321655, + "learning_rate": 9.999070037779716e-06, + "loss": 8.9844, + "step": 113 + }, + { + "epoch": 0.010946430301269012, + "eval_accuracy": 0.06662239223711247, + "eval_loss": 8.8984375, + "eval_runtime": 240.1305, + "eval_samples_per_second": 140.619, + "eval_steps_per_second": 2.199, + "step": 113 + }, + { + "epoch": 0.01104330136588201, + "grad_norm": 1.575067400932312, + "learning_rate": 9.999060350673254e-06, + "loss": 8.9453, + "step": 114 + }, + { + "epoch": 0.01104330136588201, + "eval_accuracy": 0.06693289801153271, + "eval_loss": 8.890625, + "eval_runtime": 239.4069, + "eval_samples_per_second": 141.044, + "eval_steps_per_second": 2.205, + "step": 114 + }, + { + "epoch": 0.011140172430495011, + "grad_norm": 1.509313941001892, + "learning_rate": 9.999050663566794e-06, + "loss": 8.9688, + "step": 115 + }, + { + "epoch": 0.011140172430495011, + "eval_accuracy": 0.06726662079425849, + "eval_loss": 8.8828125, + "eval_runtime": 242.3159, + "eval_samples_per_second": 139.351, + "eval_steps_per_second": 2.179, + "step": 115 + }, + { + "epoch": 0.01123704349510801, + "grad_norm": 1.48069167137146, + "learning_rate": 9.999040976460332e-06, + "loss": 8.9766, + "step": 116 + }, + { + "epoch": 0.01123704349510801, + "eval_accuracy": 0.06765149626236562, + "eval_loss": 8.875, + "eval_runtime": 241.5301, + "eval_samples_per_second": 139.805, + "eval_steps_per_second": 2.186, + "step": 116 + }, + { + "epoch": 0.011333914559721011, + "grad_norm": 1.5143989324569702, + "learning_rate": 9.999031289353872e-06, + "loss": 8.9297, + "step": 117 + }, + { + "epoch": 0.011333914559721011, + "eval_accuracy": 0.0682274054434505, + "eval_loss": 8.8671875, + "eval_runtime": 241.8791, + "eval_samples_per_second": 139.603, + "eval_steps_per_second": 2.183, + "step": 117 + }, + { + "epoch": 0.011430785624334012, + "grad_norm": 1.5148530006408691, + "learning_rate": 9.99902160224741e-06, + "loss": 8.9297, + "step": 118 + }, + { + "epoch": 0.011430785624334012, + "eval_accuracy": 0.06885003813002805, + "eval_loss": 8.859375, + "eval_runtime": 240.8979, + "eval_samples_per_second": 140.171, + "eval_steps_per_second": 2.192, + "step": 118 + }, + { + "epoch": 0.011527656688947011, + "grad_norm": 1.5727568864822388, + "learning_rate": 9.999011915140948e-06, + "loss": 8.8672, + "step": 119 + }, + { + "epoch": 0.011527656688947011, + "eval_accuracy": 0.06944707999947082, + "eval_loss": 8.8515625, + "eval_runtime": 239.842, + "eval_samples_per_second": 140.789, + "eval_steps_per_second": 2.201, + "step": 119 + }, + { + "epoch": 0.011624527753560012, + "grad_norm": 1.5209897756576538, + "learning_rate": 9.999002228034487e-06, + "loss": 8.8906, + "step": 120 + }, + { + "epoch": 0.011624527753560012, + "eval_accuracy": 0.0699609517132256, + "eval_loss": 8.8359375, + "eval_runtime": 239.7155, + "eval_samples_per_second": 140.863, + "eval_steps_per_second": 2.203, + "step": 120 + }, + { + "epoch": 0.011721398818173011, + "grad_norm": 1.4772562980651855, + "learning_rate": 9.998992540928025e-06, + "loss": 8.8984, + "step": 121 + }, + { + "epoch": 0.011721398818173011, + "eval_accuracy": 0.07026170171233542, + "eval_loss": 8.828125, + "eval_runtime": 240.3458, + "eval_samples_per_second": 140.493, + "eval_steps_per_second": 2.197, + "step": 121 + }, + { + "epoch": 0.011818269882786012, + "grad_norm": 1.4959176778793335, + "learning_rate": 9.998982853821563e-06, + "loss": 8.8984, + "step": 122 + }, + { + "epoch": 0.011818269882786012, + "eval_accuracy": 0.07044769831877305, + "eval_loss": 8.8203125, + "eval_runtime": 242.3847, + "eval_samples_per_second": 139.312, + "eval_steps_per_second": 2.178, + "step": 122 + }, + { + "epoch": 0.011915140947399011, + "grad_norm": 1.5008248090744019, + "learning_rate": 9.998973166715103e-06, + "loss": 8.8828, + "step": 123 + }, + { + "epoch": 0.011915140947399011, + "eval_accuracy": 0.07059994052161438, + "eval_loss": 8.8125, + "eval_runtime": 242.5169, + "eval_samples_per_second": 139.236, + "eval_steps_per_second": 2.177, + "step": 123 + }, + { + "epoch": 0.012012012012012012, + "grad_norm": 1.5148494243621826, + "learning_rate": 9.998963479608643e-06, + "loss": 8.8594, + "step": 124 + }, + { + "epoch": 0.012012012012012012, + "eval_accuracy": 0.07070221694348897, + "eval_loss": 8.8046875, + "eval_runtime": 241.6035, + "eval_samples_per_second": 139.762, + "eval_steps_per_second": 2.185, + "step": 124 + }, + { + "epoch": 0.012108883076625013, + "grad_norm": 1.513382077217102, + "learning_rate": 9.99895379250218e-06, + "loss": 8.8281, + "step": 125 + }, + { + "epoch": 0.012108883076625013, + "eval_accuracy": 0.07083503444237392, + "eval_loss": 8.796875, + "eval_runtime": 241.6868, + "eval_samples_per_second": 139.714, + "eval_steps_per_second": 2.185, + "step": 125 + }, + { + "epoch": 0.012205754141238012, + "grad_norm": 1.5034332275390625, + "learning_rate": 9.998944105395719e-06, + "loss": 8.8359, + "step": 126 + }, + { + "epoch": 0.012205754141238012, + "eval_accuracy": 0.07095690926153383, + "eval_loss": 8.78125, + "eval_runtime": 240.0043, + "eval_samples_per_second": 140.693, + "eval_steps_per_second": 2.2, + "step": 126 + }, + { + "epoch": 0.012302625205851013, + "grad_norm": 1.4775885343551636, + "learning_rate": 9.998934418289259e-06, + "loss": 8.8359, + "step": 127 + }, + { + "epoch": 0.012302625205851013, + "eval_accuracy": 0.07105356959910508, + "eval_loss": 8.7734375, + "eval_runtime": 238.0369, + "eval_samples_per_second": 141.856, + "eval_steps_per_second": 2.218, + "step": 127 + }, + { + "epoch": 0.012399496270464012, + "grad_norm": 1.493371605873108, + "learning_rate": 9.998924731182797e-06, + "loss": 8.8281, + "step": 128 + }, + { + "epoch": 0.012399496270464012, + "eval_accuracy": 0.07101825195554806, + "eval_loss": 8.765625, + "eval_runtime": 240.7256, + "eval_samples_per_second": 140.272, + "eval_steps_per_second": 2.193, + "step": 128 + }, + { + "epoch": 0.012496367335077013, + "grad_norm": 1.4377527236938477, + "learning_rate": 9.998915044076335e-06, + "loss": 8.8438, + "step": 129 + }, + { + "epoch": 0.012496367335077013, + "eval_accuracy": 0.07066889677321507, + "eval_loss": 8.7578125, + "eval_runtime": 241.9868, + "eval_samples_per_second": 139.541, + "eval_steps_per_second": 2.182, + "step": 129 + }, + { + "epoch": 0.012593238399690013, + "grad_norm": 1.4930979013442993, + "learning_rate": 9.998905356969873e-06, + "loss": 8.7578, + "step": 130 + }, + { + "epoch": 0.012593238399690013, + "eval_accuracy": 0.07018139749657541, + "eval_loss": 8.75, + "eval_runtime": 241.4545, + "eval_samples_per_second": 139.848, + "eval_steps_per_second": 2.187, + "step": 130 + }, + { + "epoch": 0.012690109464303012, + "grad_norm": 1.4573019742965698, + "learning_rate": 9.998895669863412e-06, + "loss": 8.7812, + "step": 131 + }, + { + "epoch": 0.012690109464303012, + "eval_accuracy": 0.06976317290930623, + "eval_loss": 8.7421875, + "eval_runtime": 241.0814, + "eval_samples_per_second": 140.065, + "eval_steps_per_second": 2.19, + "step": 131 + }, + { + "epoch": 0.012786980528916013, + "grad_norm": 1.4660903215408325, + "learning_rate": 9.998885982756952e-06, + "loss": 8.7734, + "step": 132 + }, + { + "epoch": 0.012786980528916013, + "eval_accuracy": 0.06973908743435586, + "eval_loss": 8.734375, + "eval_runtime": 240.7814, + "eval_samples_per_second": 140.239, + "eval_steps_per_second": 2.193, + "step": 132 + }, + { + "epoch": 0.012883851593529012, + "grad_norm": 1.4869788885116577, + "learning_rate": 9.99887629565049e-06, + "loss": 8.7812, + "step": 133 + }, + { + "epoch": 0.012883851593529012, + "eval_accuracy": 0.07012303653804183, + "eval_loss": 8.7265625, + "eval_runtime": 239.4345, + "eval_samples_per_second": 141.028, + "eval_steps_per_second": 2.205, + "step": 133 + }, + { + "epoch": 0.012980722658142013, + "grad_norm": 1.41987943649292, + "learning_rate": 9.998866608544028e-06, + "loss": 8.7891, + "step": 134 + }, + { + "epoch": 0.012980722658142013, + "eval_accuracy": 0.07073081844499253, + "eval_loss": 8.71875, + "eval_runtime": 238.6401, + "eval_samples_per_second": 141.498, + "eval_steps_per_second": 2.213, + "step": 134 + }, + { + "epoch": 0.013077593722755012, + "grad_norm": 1.4336059093475342, + "learning_rate": 9.998856921437568e-06, + "loss": 8.7656, + "step": 135 + }, + { + "epoch": 0.013077593722755012, + "eval_accuracy": 0.0712553722984789, + "eval_loss": 8.703125, + "eval_runtime": 239.3711, + "eval_samples_per_second": 141.065, + "eval_steps_per_second": 2.206, + "step": 135 + }, + { + "epoch": 0.013174464787368013, + "grad_norm": 1.4126527309417725, + "learning_rate": 9.998847234331106e-06, + "loss": 8.7891, + "step": 136 + }, + { + "epoch": 0.013174464787368013, + "eval_accuracy": 0.07193187886592499, + "eval_loss": 8.6953125, + "eval_runtime": 241.9039, + "eval_samples_per_second": 139.588, + "eval_steps_per_second": 2.183, + "step": 136 + }, + { + "epoch": 0.013271335851981014, + "grad_norm": 1.4684745073318481, + "learning_rate": 9.998837547224644e-06, + "loss": 8.7188, + "step": 137 + }, + { + "epoch": 0.013271335851981014, + "eval_accuracy": 0.0726333393749663, + "eval_loss": 8.6875, + "eval_runtime": 241.6523, + "eval_samples_per_second": 139.734, + "eval_steps_per_second": 2.185, + "step": 137 + }, + { + "epoch": 0.013368206916594013, + "grad_norm": 1.434983730316162, + "learning_rate": 9.998827860118184e-06, + "loss": 8.7266, + "step": 138 + }, + { + "epoch": 0.013368206916594013, + "eval_accuracy": 0.07333210763740858, + "eval_loss": 8.6796875, + "eval_runtime": 241.7758, + "eval_samples_per_second": 139.662, + "eval_steps_per_second": 2.184, + "step": 138 + }, + { + "epoch": 0.013465077981207014, + "grad_norm": 1.4157376289367676, + "learning_rate": 9.998818173011722e-06, + "loss": 8.75, + "step": 139 + }, + { + "epoch": 0.013465077981207014, + "eval_accuracy": 0.07374755313141426, + "eval_loss": 8.671875, + "eval_runtime": 239.433, + "eval_samples_per_second": 141.029, + "eval_steps_per_second": 2.205, + "step": 139 + }, + { + "epoch": 0.013561949045820013, + "grad_norm": 1.4349616765975952, + "learning_rate": 9.998808485905261e-06, + "loss": 8.7188, + "step": 140 + }, + { + "epoch": 0.013561949045820013, + "eval_accuracy": 0.07402439134890268, + "eval_loss": 8.6640625, + "eval_runtime": 240.1811, + "eval_samples_per_second": 140.59, + "eval_steps_per_second": 2.198, + "step": 140 + }, + { + "epoch": 0.013658820110433014, + "grad_norm": 1.3990036249160767, + "learning_rate": 9.9987987987988e-06, + "loss": 8.7344, + "step": 141 + }, + { + "epoch": 0.013658820110433014, + "eval_accuracy": 0.07422755464602009, + "eval_loss": 8.65625, + "eval_runtime": 239.6139, + "eval_samples_per_second": 140.923, + "eval_steps_per_second": 2.204, + "step": 141 + }, + { + "epoch": 0.013755691175046015, + "grad_norm": 1.4333348274230957, + "learning_rate": 9.99878911169234e-06, + "loss": 8.6641, + "step": 142 + }, + { + "epoch": 0.013755691175046015, + "eval_accuracy": 0.0741873156914756, + "eval_loss": 8.6484375, + "eval_runtime": 240.5249, + "eval_samples_per_second": 140.389, + "eval_steps_per_second": 2.195, + "step": 142 + }, + { + "epoch": 0.013852562239659014, + "grad_norm": 1.395568609237671, + "learning_rate": 9.998779424585877e-06, + "loss": 8.7031, + "step": 143 + }, + { + "epoch": 0.013852562239659014, + "eval_accuracy": 0.07413063376845538, + "eval_loss": 8.640625, + "eval_runtime": 241.0655, + "eval_samples_per_second": 140.074, + "eval_steps_per_second": 2.19, + "step": 143 + }, + { + "epoch": 0.013949433304272014, + "grad_norm": 1.4352083206176758, + "learning_rate": 9.998769737479415e-06, + "loss": 8.6797, + "step": 144 + }, + { + "epoch": 0.013949433304272014, + "eval_accuracy": 0.07412177540867797, + "eval_loss": 8.6328125, + "eval_runtime": 241.4457, + "eval_samples_per_second": 139.853, + "eval_steps_per_second": 2.187, + "step": 144 + }, + { + "epoch": 0.014046304368885014, + "grad_norm": 1.3976655006408691, + "learning_rate": 9.998760050372955e-06, + "loss": 8.6797, + "step": 145 + }, + { + "epoch": 0.014046304368885014, + "eval_accuracy": 0.07388228125691788, + "eval_loss": 8.6171875, + "eval_runtime": 242.6627, + "eval_samples_per_second": 139.152, + "eval_steps_per_second": 2.176, + "step": 145 + }, + { + "epoch": 0.014143175433498014, + "grad_norm": 1.4085290431976318, + "learning_rate": 9.998750363266493e-06, + "loss": 8.6719, + "step": 146 + }, + { + "epoch": 0.014143175433498014, + "eval_accuracy": 0.07361215918148292, + "eval_loss": 8.609375, + "eval_runtime": 240.5995, + "eval_samples_per_second": 140.345, + "eval_steps_per_second": 2.195, + "step": 146 + }, + { + "epoch": 0.014240046498111014, + "grad_norm": 1.4239732027053833, + "learning_rate": 9.998740676160031e-06, + "loss": 8.6641, + "step": 147 + }, + { + "epoch": 0.014240046498111014, + "eval_accuracy": 0.07357530724685334, + "eval_loss": 8.6015625, + "eval_runtime": 240.087, + "eval_samples_per_second": 140.645, + "eval_steps_per_second": 2.199, + "step": 147 + }, + { + "epoch": 0.014336917562724014, + "grad_norm": 1.4121946096420288, + "learning_rate": 9.99873098905357e-06, + "loss": 8.6484, + "step": 148 + }, + { + "epoch": 0.014336917562724014, + "eval_accuracy": 0.07371012221902144, + "eval_loss": 8.59375, + "eval_runtime": 240.6261, + "eval_samples_per_second": 140.33, + "eval_steps_per_second": 2.194, + "step": 148 + }, + { + "epoch": 0.014433788627337015, + "grad_norm": 1.4172465801239014, + "learning_rate": 9.99872130194711e-06, + "loss": 8.6172, + "step": 149 + }, + { + "epoch": 0.014433788627337015, + "eval_accuracy": 0.07406176436351918, + "eval_loss": 8.5859375, + "eval_runtime": 238.2968, + "eval_samples_per_second": 141.701, + "eval_steps_per_second": 2.216, + "step": 149 + }, + { + "epoch": 0.014530659691950014, + "grad_norm": 1.366936445236206, + "learning_rate": 9.998711614840649e-06, + "loss": 8.6719, + "step": 150 + }, + { + "epoch": 0.014530659691950014, + "eval_accuracy": 0.0746068140298239, + "eval_loss": 8.578125, + "eval_runtime": 241.6018, + "eval_samples_per_second": 139.763, + "eval_steps_per_second": 2.185, + "step": 150 + }, + { + "epoch": 0.014627530756563015, + "grad_norm": 1.3992184400558472, + "learning_rate": 9.998701927734187e-06, + "loss": 8.6406, + "step": 151 + }, + { + "epoch": 0.014627530756563015, + "eval_accuracy": 0.07503204424802817, + "eval_loss": 8.5703125, + "eval_runtime": 242.6844, + "eval_samples_per_second": 139.14, + "eval_steps_per_second": 2.176, + "step": 151 + }, + { + "epoch": 0.014724401821176014, + "grad_norm": 1.3632800579071045, + "learning_rate": 9.998692240627725e-06, + "loss": 8.6172, + "step": 152 + }, + { + "epoch": 0.014724401821176014, + "eval_accuracy": 0.07536941459066229, + "eval_loss": 8.5625, + "eval_runtime": 242.1383, + "eval_samples_per_second": 139.453, + "eval_steps_per_second": 2.181, + "step": 152 + }, + { + "epoch": 0.014821272885789015, + "grad_norm": 1.3528015613555908, + "learning_rate": 9.998682553521264e-06, + "loss": 8.6094, + "step": 153 + }, + { + "epoch": 0.014821272885789015, + "eval_accuracy": 0.07561990931992374, + "eval_loss": 8.5546875, + "eval_runtime": 241.5544, + "eval_samples_per_second": 139.79, + "eval_steps_per_second": 2.186, + "step": 153 + }, + { + "epoch": 0.014918143950402014, + "grad_norm": 1.3605914115905762, + "learning_rate": 9.998672866414802e-06, + "loss": 8.6016, + "step": 154 + }, + { + "epoch": 0.014918143950402014, + "eval_accuracy": 0.07561860661995648, + "eval_loss": 8.546875, + "eval_runtime": 241.8113, + "eval_samples_per_second": 139.642, + "eval_steps_per_second": 2.184, + "step": 154 + }, + { + "epoch": 0.015015015015015015, + "grad_norm": 1.3871914148330688, + "learning_rate": 9.99866317930834e-06, + "loss": 8.5625, + "step": 155 + }, + { + "epoch": 0.015015015015015015, + "eval_accuracy": 0.07551598281142397, + "eval_loss": 8.5390625, + "eval_runtime": 239.4463, + "eval_samples_per_second": 141.021, + "eval_steps_per_second": 2.205, + "step": 155 + }, + { + "epoch": 0.015111886079628016, + "grad_norm": 1.3802464008331299, + "learning_rate": 9.99865349220188e-06, + "loss": 8.5312, + "step": 156 + }, + { + "epoch": 0.015111886079628016, + "eval_accuracy": 0.07555937719477805, + "eval_loss": 8.53125, + "eval_runtime": 240.4355, + "eval_samples_per_second": 140.441, + "eval_steps_per_second": 2.196, + "step": 156 + }, + { + "epoch": 0.015208757144241015, + "grad_norm": 1.372429609298706, + "learning_rate": 9.99864380509542e-06, + "loss": 8.5703, + "step": 157 + }, + { + "epoch": 0.015208757144241015, + "eval_accuracy": 0.07562842029304323, + "eval_loss": 8.5234375, + "eval_runtime": 241.532, + "eval_samples_per_second": 139.803, + "eval_steps_per_second": 2.186, + "step": 157 + }, + { + "epoch": 0.015305628208854016, + "grad_norm": 1.2991220951080322, + "learning_rate": 9.998634117988958e-06, + "loss": 8.6172, + "step": 158 + }, + { + "epoch": 0.015305628208854016, + "eval_accuracy": 0.07567942823398378, + "eval_loss": 8.515625, + "eval_runtime": 240.874, + "eval_samples_per_second": 140.185, + "eval_steps_per_second": 2.192, + "step": 158 + }, + { + "epoch": 0.015402499273467015, + "grad_norm": 1.3360435962677002, + "learning_rate": 9.998624430882496e-06, + "loss": 8.5781, + "step": 159 + }, + { + "epoch": 0.015402499273467015, + "eval_accuracy": 0.07568432059608309, + "eval_loss": 8.5078125, + "eval_runtime": 242.8721, + "eval_samples_per_second": 139.032, + "eval_steps_per_second": 2.174, + "step": 159 + }, + { + "epoch": 0.015499370338080016, + "grad_norm": 1.323406457901001, + "learning_rate": 9.998614743776036e-06, + "loss": 8.6016, + "step": 160 + }, + { + "epoch": 0.015499370338080016, + "eval_accuracy": 0.0758624431049408, + "eval_loss": 8.5, + "eval_runtime": 241.6758, + "eval_samples_per_second": 139.72, + "eval_steps_per_second": 2.185, + "step": 160 + }, + { + "epoch": 0.015596241402693016, + "grad_norm": 1.318803310394287, + "learning_rate": 9.998605056669574e-06, + "loss": 8.5547, + "step": 161 + }, + { + "epoch": 0.015596241402693016, + "eval_accuracy": 0.076235681120007, + "eval_loss": 8.4921875, + "eval_runtime": 241.1344, + "eval_samples_per_second": 140.034, + "eval_steps_per_second": 2.19, + "step": 161 + }, + { + "epoch": 0.015693112467306015, + "grad_norm": 1.3205766677856445, + "learning_rate": 9.998595369563112e-06, + "loss": 8.5547, + "step": 162 + }, + { + "epoch": 0.015693112467306015, + "eval_accuracy": 0.07658955232889318, + "eval_loss": 8.484375, + "eval_runtime": 241.2454, + "eval_samples_per_second": 139.97, + "eval_steps_per_second": 2.189, + "step": 162 + }, + { + "epoch": 0.015789983531919016, + "grad_norm": 1.3163981437683105, + "learning_rate": 9.998585682456651e-06, + "loss": 8.5312, + "step": 163 + }, + { + "epoch": 0.015789983531919016, + "eval_accuracy": 0.07672393306773886, + "eval_loss": 8.4765625, + "eval_runtime": 239.2463, + "eval_samples_per_second": 141.139, + "eval_steps_per_second": 2.207, + "step": 163 + }, + { + "epoch": 0.015886854596532017, + "grad_norm": 1.330255389213562, + "learning_rate": 9.99857599535019e-06, + "loss": 8.5, + "step": 164 + }, + { + "epoch": 0.015886854596532017, + "eval_accuracy": 0.07668372306208254, + "eval_loss": 8.46875, + "eval_runtime": 242.9928, + "eval_samples_per_second": 138.963, + "eval_steps_per_second": 2.173, + "step": 164 + }, + { + "epoch": 0.015983725661145014, + "grad_norm": 1.3156908750534058, + "learning_rate": 9.998566308243727e-06, + "loss": 8.5312, + "step": 165 + }, + { + "epoch": 0.015983725661145014, + "eval_accuracy": 0.07662301724360787, + "eval_loss": 8.4609375, + "eval_runtime": 242.8743, + "eval_samples_per_second": 139.031, + "eval_steps_per_second": 2.174, + "step": 165 + }, + { + "epoch": 0.016080596725758015, + "grad_norm": 1.3243170976638794, + "learning_rate": 9.998556621137267e-06, + "loss": 8.5312, + "step": 166 + }, + { + "epoch": 0.016080596725758015, + "eval_accuracy": 0.07658451522235309, + "eval_loss": 8.453125, + "eval_runtime": 242.3105, + "eval_samples_per_second": 139.354, + "eval_steps_per_second": 2.179, + "step": 166 + }, + { + "epoch": 0.016177467790371016, + "grad_norm": 1.343295931816101, + "learning_rate": 9.998546934030807e-06, + "loss": 8.4531, + "step": 167 + }, + { + "epoch": 0.016177467790371016, + "eval_accuracy": 0.07665937704713872, + "eval_loss": 8.4453125, + "eval_runtime": 242.1425, + "eval_samples_per_second": 139.451, + "eval_steps_per_second": 2.181, + "step": 167 + }, + { + "epoch": 0.016274338854984017, + "grad_norm": 1.3232625722885132, + "learning_rate": 9.998537246924345e-06, + "loss": 8.4766, + "step": 168 + }, + { + "epoch": 0.016274338854984017, + "eval_accuracy": 0.07678096237741702, + "eval_loss": 8.4375, + "eval_runtime": 241.0831, + "eval_samples_per_second": 140.064, + "eval_steps_per_second": 2.19, + "step": 168 + }, + { + "epoch": 0.016371209919597018, + "grad_norm": 1.3026939630508423, + "learning_rate": 9.998527559817883e-06, + "loss": 8.4766, + "step": 169 + }, + { + "epoch": 0.016371209919597018, + "eval_accuracy": 0.07695766639075481, + "eval_loss": 8.4296875, + "eval_runtime": 241.0848, + "eval_samples_per_second": 140.063, + "eval_steps_per_second": 2.19, + "step": 169 + }, + { + "epoch": 0.016468080984210015, + "grad_norm": 1.3087149858474731, + "learning_rate": 9.998517872711423e-06, + "loss": 8.4688, + "step": 170 + }, + { + "epoch": 0.016468080984210015, + "eval_accuracy": 0.0772238514173998, + "eval_loss": 8.421875, + "eval_runtime": 239.3699, + "eval_samples_per_second": 141.066, + "eval_steps_per_second": 2.206, + "step": 170 + }, + { + "epoch": 0.016564952048823016, + "grad_norm": 1.2863601446151733, + "learning_rate": 9.99850818560496e-06, + "loss": 8.4922, + "step": 171 + }, + { + "epoch": 0.016564952048823016, + "eval_accuracy": 0.077486128344143, + "eval_loss": 8.4140625, + "eval_runtime": 240.0556, + "eval_samples_per_second": 140.663, + "eval_steps_per_second": 2.199, + "step": 171 + }, + { + "epoch": 0.016661823113436017, + "grad_norm": 1.267603874206543, + "learning_rate": 9.998498498498499e-06, + "loss": 8.4375, + "step": 172 + }, + { + "epoch": 0.016661823113436017, + "eval_accuracy": 0.07766749312847479, + "eval_loss": 8.4140625, + "eval_runtime": 240.7221, + "eval_samples_per_second": 140.274, + "eval_steps_per_second": 2.193, + "step": 172 + }, + { + "epoch": 0.016758694178049018, + "grad_norm": 1.27737295627594, + "learning_rate": 9.998488811392037e-06, + "loss": 8.4609, + "step": 173 + }, + { + "epoch": 0.016758694178049018, + "eval_accuracy": 0.07765209231997287, + "eval_loss": 8.40625, + "eval_runtime": 241.2721, + "eval_samples_per_second": 139.954, + "eval_steps_per_second": 2.188, + "step": 173 + }, + { + "epoch": 0.01685556524266202, + "grad_norm": 1.3177382946014404, + "learning_rate": 9.998479124285576e-06, + "loss": 8.4141, + "step": 174 + }, + { + "epoch": 0.01685556524266202, + "eval_accuracy": 0.07766830369734332, + "eval_loss": 8.3984375, + "eval_runtime": 241.2269, + "eval_samples_per_second": 139.98, + "eval_steps_per_second": 2.189, + "step": 174 + }, + { + "epoch": 0.016952436307275016, + "grad_norm": 1.2761859893798828, + "learning_rate": 9.998469437179116e-06, + "loss": 8.4531, + "step": 175 + }, + { + "epoch": 0.016952436307275016, + "eval_accuracy": 0.0777974157385436, + "eval_loss": 8.390625, + "eval_runtime": 242.9014, + "eval_samples_per_second": 139.015, + "eval_steps_per_second": 2.174, + "step": 175 + }, + { + "epoch": 0.017049307371888017, + "grad_norm": 1.25885808467865, + "learning_rate": 9.998459750072654e-06, + "loss": 8.3984, + "step": 176 + }, + { + "epoch": 0.017049307371888017, + "eval_accuracy": 0.07782648042225775, + "eval_loss": 8.3828125, + "eval_runtime": 240.1918, + "eval_samples_per_second": 140.584, + "eval_steps_per_second": 2.198, + "step": 176 + }, + { + "epoch": 0.017146178436501017, + "grad_norm": 1.258347988128662, + "learning_rate": 9.998450062966192e-06, + "loss": 8.4141, + "step": 177 + }, + { + "epoch": 0.017146178436501017, + "eval_accuracy": 0.07790733466689281, + "eval_loss": 8.375, + "eval_runtime": 239.9645, + "eval_samples_per_second": 140.717, + "eval_steps_per_second": 2.2, + "step": 177 + }, + { + "epoch": 0.017243049501114018, + "grad_norm": 1.2390292882919312, + "learning_rate": 9.998440375859732e-06, + "loss": 8.4453, + "step": 178 + }, + { + "epoch": 0.017243049501114018, + "eval_accuracy": 0.07808157802473688, + "eval_loss": 8.3671875, + "eval_runtime": 238.5786, + "eval_samples_per_second": 141.534, + "eval_steps_per_second": 2.213, + "step": 178 + }, + { + "epoch": 0.01733992056572702, + "grad_norm": 1.2472869157791138, + "learning_rate": 9.99843068875327e-06, + "loss": 8.4219, + "step": 179 + }, + { + "epoch": 0.01733992056572702, + "eval_accuracy": 0.07831968262986522, + "eval_loss": 8.359375, + "eval_runtime": 240.78, + "eval_samples_per_second": 140.24, + "eval_steps_per_second": 2.193, + "step": 179 + }, + { + "epoch": 0.017436791630340016, + "grad_norm": 1.2041652202606201, + "learning_rate": 9.998421001646808e-06, + "loss": 8.4219, + "step": 180 + }, + { + "epoch": 0.017436791630340016, + "eval_accuracy": 0.07850064212976275, + "eval_loss": 8.3515625, + "eval_runtime": 243.4958, + "eval_samples_per_second": 138.676, + "eval_steps_per_second": 2.168, + "step": 180 + }, + { + "epoch": 0.017533662694953017, + "grad_norm": 1.1937860250473022, + "learning_rate": 9.998411314540348e-06, + "loss": 8.4062, + "step": 181 + }, + { + "epoch": 0.017533662694953017, + "eval_accuracy": 0.07853622031331324, + "eval_loss": 8.34375, + "eval_runtime": 242.9108, + "eval_samples_per_second": 139.01, + "eval_steps_per_second": 2.174, + "step": 181 + }, + { + "epoch": 0.017630533759566018, + "grad_norm": 1.2295143604278564, + "learning_rate": 9.998401627433887e-06, + "loss": 8.3984, + "step": 182 + }, + { + "epoch": 0.017630533759566018, + "eval_accuracy": 0.07868744930506891, + "eval_loss": 8.3359375, + "eval_runtime": 242.8021, + "eval_samples_per_second": 139.072, + "eval_steps_per_second": 2.175, + "step": 182 + }, + { + "epoch": 0.01772740482417902, + "grad_norm": 1.229699730873108, + "learning_rate": 9.998391940327426e-06, + "loss": 8.3828, + "step": 183 + }, + { + "epoch": 0.01772740482417902, + "eval_accuracy": 0.0789600320359976, + "eval_loss": 8.328125, + "eval_runtime": 242.7645, + "eval_samples_per_second": 139.094, + "eval_steps_per_second": 2.175, + "step": 183 + }, + { + "epoch": 0.017824275888792016, + "grad_norm": 1.2546368837356567, + "learning_rate": 9.998382253220964e-06, + "loss": 8.375, + "step": 184 + }, + { + "epoch": 0.017824275888792016, + "eval_accuracy": 0.07920493962984389, + "eval_loss": 8.3203125, + "eval_runtime": 239.9494, + "eval_samples_per_second": 140.726, + "eval_steps_per_second": 2.2, + "step": 184 + }, + { + "epoch": 0.017921146953405017, + "grad_norm": 1.2304656505584717, + "learning_rate": 9.998372566114503e-06, + "loss": 8.3594, + "step": 185 + }, + { + "epoch": 0.017921146953405017, + "eval_accuracy": 0.07946394533222483, + "eval_loss": 8.3125, + "eval_runtime": 239.6503, + "eval_samples_per_second": 140.901, + "eval_steps_per_second": 2.203, + "step": 185 + }, + { + "epoch": 0.018018018018018018, + "grad_norm": 1.1984411478042603, + "learning_rate": 9.998362879008041e-06, + "loss": 8.375, + "step": 186 + }, + { + "epoch": 0.018018018018018018, + "eval_accuracy": 0.07966461902496035, + "eval_loss": 8.3125, + "eval_runtime": 240.948, + "eval_samples_per_second": 140.142, + "eval_steps_per_second": 2.191, + "step": 186 + }, + { + "epoch": 0.01811488908263102, + "grad_norm": 1.2182241678237915, + "learning_rate": 9.99835319190158e-06, + "loss": 8.3125, + "step": 187 + }, + { + "epoch": 0.01811488908263102, + "eval_accuracy": 0.07963677019454897, + "eval_loss": 8.3046875, + "eval_runtime": 241.9831, + "eval_samples_per_second": 139.543, + "eval_steps_per_second": 2.182, + "step": 187 + }, + { + "epoch": 0.01821176014724402, + "grad_norm": 1.2160634994506836, + "learning_rate": 9.998343504795119e-06, + "loss": 8.3438, + "step": 188 + }, + { + "epoch": 0.01821176014724402, + "eval_accuracy": 0.07958732549356913, + "eval_loss": 8.296875, + "eval_runtime": 243.0735, + "eval_samples_per_second": 138.917, + "eval_steps_per_second": 2.172, + "step": 188 + }, + { + "epoch": 0.018308631211857017, + "grad_norm": 1.2408748865127563, + "learning_rate": 9.998333817688657e-06, + "loss": 8.3281, + "step": 189 + }, + { + "epoch": 0.018308631211857017, + "eval_accuracy": 0.0795488524212025, + "eval_loss": 8.2890625, + "eval_runtime": 242.5702, + "eval_samples_per_second": 139.205, + "eval_steps_per_second": 2.177, + "step": 189 + }, + { + "epoch": 0.018405502276470018, + "grad_norm": 1.1811424493789673, + "learning_rate": 9.998324130582195e-06, + "loss": 8.3359, + "step": 190 + }, + { + "epoch": 0.018405502276470018, + "eval_accuracy": 0.07950351846234159, + "eval_loss": 8.28125, + "eval_runtime": 241.8027, + "eval_samples_per_second": 139.647, + "eval_steps_per_second": 2.184, + "step": 190 + }, + { + "epoch": 0.01850237334108302, + "grad_norm": 1.2242190837860107, + "learning_rate": 9.998314443475735e-06, + "loss": 8.3047, + "step": 191 + }, + { + "epoch": 0.01850237334108302, + "eval_accuracy": 0.07975195782054359, + "eval_loss": 8.2734375, + "eval_runtime": 241.7121, + "eval_samples_per_second": 139.699, + "eval_steps_per_second": 2.184, + "step": 191 + }, + { + "epoch": 0.01859924440569602, + "grad_norm": 1.2018407583236694, + "learning_rate": 9.998304756369273e-06, + "loss": 8.3359, + "step": 192 + }, + { + "epoch": 0.01859924440569602, + "eval_accuracy": 0.08004521005761958, + "eval_loss": 8.265625, + "eval_runtime": 241.0872, + "eval_samples_per_second": 140.061, + "eval_steps_per_second": 2.19, + "step": 192 + }, + { + "epoch": 0.01869611547030902, + "grad_norm": 1.1608692407608032, + "learning_rate": 9.998295069262813e-06, + "loss": 8.3047, + "step": 193 + }, + { + "epoch": 0.01869611547030902, + "eval_accuracy": 0.08031692432190342, + "eval_loss": 8.2578125, + "eval_runtime": 241.524, + "eval_samples_per_second": 139.808, + "eval_steps_per_second": 2.186, + "step": 193 + }, + { + "epoch": 0.018792986534922018, + "grad_norm": 1.1747246980667114, + "learning_rate": 9.99828538215635e-06, + "loss": 8.2969, + "step": 194 + }, + { + "epoch": 0.018792986534922018, + "eval_accuracy": 0.08048132505777257, + "eval_loss": 8.2578125, + "eval_runtime": 239.0651, + "eval_samples_per_second": 141.246, + "eval_steps_per_second": 2.209, + "step": 194 + }, + { + "epoch": 0.01888985759953502, + "grad_norm": 1.14412260055542, + "learning_rate": 9.998275695049889e-06, + "loss": 8.3203, + "step": 195 + }, + { + "epoch": 0.01888985759953502, + "eval_accuracy": 0.08070339197885944, + "eval_loss": 8.25, + "eval_runtime": 241.1404, + "eval_samples_per_second": 140.03, + "eval_steps_per_second": 2.19, + "step": 195 + }, + { + "epoch": 0.01898672866414802, + "grad_norm": 1.1623828411102295, + "learning_rate": 9.998266007943428e-06, + "loss": 8.2734, + "step": 196 + }, + { + "epoch": 0.01898672866414802, + "eval_accuracy": 0.08091521099353713, + "eval_loss": 8.2421875, + "eval_runtime": 240.6022, + "eval_samples_per_second": 140.344, + "eval_steps_per_second": 2.194, + "step": 196 + }, + { + "epoch": 0.01908359972876102, + "grad_norm": 1.158718466758728, + "learning_rate": 9.998256320836966e-06, + "loss": 8.25, + "step": 197 + }, + { + "epoch": 0.01908359972876102, + "eval_accuracy": 0.08093220399088794, + "eval_loss": 8.234375, + "eval_runtime": 239.6707, + "eval_samples_per_second": 140.889, + "eval_steps_per_second": 2.203, + "step": 197 + }, + { + "epoch": 0.01918047079337402, + "grad_norm": 1.1638875007629395, + "learning_rate": 9.998246633730504e-06, + "loss": 8.2734, + "step": 198 + }, + { + "epoch": 0.01918047079337402, + "eval_accuracy": 0.08096642157669483, + "eval_loss": 8.2265625, + "eval_runtime": 239.016, + "eval_samples_per_second": 141.275, + "eval_steps_per_second": 2.209, + "step": 198 + }, + { + "epoch": 0.019277341857987018, + "grad_norm": 1.2000994682312012, + "learning_rate": 9.998236946624044e-06, + "loss": 8.2109, + "step": 199 + }, + { + "epoch": 0.019277341857987018, + "eval_accuracy": 0.08091442937355676, + "eval_loss": 8.21875, + "eval_runtime": 238.0069, + "eval_samples_per_second": 141.874, + "eval_steps_per_second": 2.218, + "step": 199 + }, + { + "epoch": 0.01937421292260002, + "grad_norm": 1.147640347480774, + "learning_rate": 9.998227259517584e-06, + "loss": 8.25, + "step": 200 + }, + { + "epoch": 0.01937421292260002, + "eval_accuracy": 0.08094085970844822, + "eval_loss": 8.2109375, + "eval_runtime": 239.3683, + "eval_samples_per_second": 141.067, + "eval_steps_per_second": 2.206, + "step": 200 + }, + { + "epoch": 0.01947108398721302, + "grad_norm": 1.143306851387024, + "learning_rate": 9.998217572411122e-06, + "loss": 8.2734, + "step": 201 + }, + { + "epoch": 0.01947108398721302, + "eval_accuracy": 0.08100220240246243, + "eval_loss": 8.203125, + "eval_runtime": 240.6044, + "eval_samples_per_second": 140.342, + "eval_steps_per_second": 2.194, + "step": 201 + }, + { + "epoch": 0.01956795505182602, + "grad_norm": 1.1851661205291748, + "learning_rate": 9.99820788530466e-06, + "loss": 8.2188, + "step": 202 + }, + { + "epoch": 0.01956795505182602, + "eval_accuracy": 0.08122783003679317, + "eval_loss": 8.203125, + "eval_runtime": 239.3597, + "eval_samples_per_second": 141.072, + "eval_steps_per_second": 2.206, + "step": 202 + }, + { + "epoch": 0.019664826116439018, + "grad_norm": 1.1528866291046143, + "learning_rate": 9.9981981981982e-06, + "loss": 8.2578, + "step": 203 + }, + { + "epoch": 0.019664826116439018, + "eval_accuracy": 0.08159895478302359, + "eval_loss": 8.1953125, + "eval_runtime": 239.5354, + "eval_samples_per_second": 140.969, + "eval_steps_per_second": 2.204, + "step": 203 + }, + { + "epoch": 0.01976169718105202, + "grad_norm": 1.121721625328064, + "learning_rate": 9.998188511091738e-06, + "loss": 8.2344, + "step": 204 + }, + { + "epoch": 0.01976169718105202, + "eval_accuracy": 0.08193849629226983, + "eval_loss": 8.1875, + "eval_runtime": 240.2982, + "eval_samples_per_second": 140.521, + "eval_steps_per_second": 2.197, + "step": 204 + }, + { + "epoch": 0.01985856824566502, + "grad_norm": 1.120973825454712, + "learning_rate": 9.998178823985276e-06, + "loss": 8.2969, + "step": 205 + }, + { + "epoch": 0.01985856824566502, + "eval_accuracy": 0.0822807879458914, + "eval_loss": 8.1796875, + "eval_runtime": 239.9882, + "eval_samples_per_second": 140.703, + "eval_steps_per_second": 2.2, + "step": 205 + }, + { + "epoch": 0.01995543931027802, + "grad_norm": 1.1114741563796997, + "learning_rate": 9.998169136878815e-06, + "loss": 8.2812, + "step": 206 + }, + { + "epoch": 0.01995543931027802, + "eval_accuracy": 0.08245699982813046, + "eval_loss": 8.171875, + "eval_runtime": 237.9497, + "eval_samples_per_second": 141.908, + "eval_steps_per_second": 2.219, + "step": 206 + }, + { + "epoch": 0.02005231037489102, + "grad_norm": 1.1044974327087402, + "learning_rate": 9.998159449772353e-06, + "loss": 8.2578, + "step": 207 + }, + { + "epoch": 0.02005231037489102, + "eval_accuracy": 0.08243728563529247, + "eval_loss": 8.1640625, + "eval_runtime": 239.4885, + "eval_samples_per_second": 140.996, + "eval_steps_per_second": 2.205, + "step": 207 + }, + { + "epoch": 0.02014918143950402, + "grad_norm": 1.156922459602356, + "learning_rate": 9.998149762665893e-06, + "loss": 8.2031, + "step": 208 + }, + { + "epoch": 0.02014918143950402, + "eval_accuracy": 0.08235234959742663, + "eval_loss": 8.1640625, + "eval_runtime": 241.2039, + "eval_samples_per_second": 139.994, + "eval_steps_per_second": 2.189, + "step": 208 + }, + { + "epoch": 0.02024605250411702, + "grad_norm": 1.1297597885131836, + "learning_rate": 9.998140075559431e-06, + "loss": 8.1953, + "step": 209 + }, + { + "epoch": 0.02024605250411702, + "eval_accuracy": 0.08222390338065405, + "eval_loss": 8.15625, + "eval_runtime": 240.9498, + "eval_samples_per_second": 140.141, + "eval_steps_per_second": 2.191, + "step": 209 + }, + { + "epoch": 0.02034292356873002, + "grad_norm": 1.0749586820602417, + "learning_rate": 9.998130388452971e-06, + "loss": 8.2344, + "step": 210 + }, + { + "epoch": 0.02034292356873002, + "eval_accuracy": 0.08212646142310244, + "eval_loss": 8.1484375, + "eval_runtime": 240.1358, + "eval_samples_per_second": 140.616, + "eval_steps_per_second": 2.199, + "step": 210 + }, + { + "epoch": 0.02043979463334302, + "grad_norm": 1.1359708309173584, + "learning_rate": 9.998120701346509e-06, + "loss": 8.1484, + "step": 211 + }, + { + "epoch": 0.02043979463334302, + "eval_accuracy": 0.08224295174906432, + "eval_loss": 8.140625, + "eval_runtime": 239.69, + "eval_samples_per_second": 140.878, + "eval_steps_per_second": 2.203, + "step": 211 + }, + { + "epoch": 0.020536665697956022, + "grad_norm": 1.0708686113357544, + "learning_rate": 9.998111014240047e-06, + "loss": 8.2188, + "step": 212 + }, + { + "epoch": 0.020536665697956022, + "eval_accuracy": 0.08242179798012607, + "eval_loss": 8.1328125, + "eval_runtime": 239.7594, + "eval_samples_per_second": 140.837, + "eval_steps_per_second": 2.202, + "step": 212 + }, + { + "epoch": 0.02063353676256902, + "grad_norm": 1.1410462856292725, + "learning_rate": 9.998101327133585e-06, + "loss": 8.1406, + "step": 213 + }, + { + "epoch": 0.02063353676256902, + "eval_accuracy": 0.08258810934261389, + "eval_loss": 8.1328125, + "eval_runtime": 236.9832, + "eval_samples_per_second": 142.487, + "eval_steps_per_second": 2.228, + "step": 213 + }, + { + "epoch": 0.02073040782718202, + "grad_norm": 1.1414846181869507, + "learning_rate": 9.998091640027125e-06, + "loss": 8.1641, + "step": 214 + }, + { + "epoch": 0.02073040782718202, + "eval_accuracy": 0.08288260638188082, + "eval_loss": 8.125, + "eval_runtime": 238.8778, + "eval_samples_per_second": 141.357, + "eval_steps_per_second": 2.21, + "step": 214 + }, + { + "epoch": 0.02082727889179502, + "grad_norm": 1.1182080507278442, + "learning_rate": 9.998081952920663e-06, + "loss": 8.1328, + "step": 215 + }, + { + "epoch": 0.02082727889179502, + "eval_accuracy": 0.08311975567369982, + "eval_loss": 8.1171875, + "eval_runtime": 241.545, + "eval_samples_per_second": 139.796, + "eval_steps_per_second": 2.186, + "step": 215 + }, + { + "epoch": 0.020924149956408022, + "grad_norm": 1.0699214935302734, + "learning_rate": 9.998072265814202e-06, + "loss": 8.1875, + "step": 216 + }, + { + "epoch": 0.020924149956408022, + "eval_accuracy": 0.08333493275940426, + "eval_loss": 8.109375, + "eval_runtime": 240.2573, + "eval_samples_per_second": 140.545, + "eval_steps_per_second": 2.198, + "step": 216 + }, + { + "epoch": 0.021021021021021023, + "grad_norm": 1.0673527717590332, + "learning_rate": 9.99806257870774e-06, + "loss": 8.1719, + "step": 217 + }, + { + "epoch": 0.021021021021021023, + "eval_accuracy": 0.0834616709917753, + "eval_loss": 8.1015625, + "eval_runtime": 241.6637, + "eval_samples_per_second": 139.727, + "eval_steps_per_second": 2.185, + "step": 217 + }, + { + "epoch": 0.02111789208563402, + "grad_norm": 1.0935176610946655, + "learning_rate": 9.99805289160128e-06, + "loss": 8.125, + "step": 218 + }, + { + "epoch": 0.02111789208563402, + "eval_accuracy": 0.08352278209468422, + "eval_loss": 8.1015625, + "eval_runtime": 239.5275, + "eval_samples_per_second": 140.973, + "eval_steps_per_second": 2.204, + "step": 218 + }, + { + "epoch": 0.02121476315024702, + "grad_norm": 1.0975334644317627, + "learning_rate": 9.998043204494818e-06, + "loss": 8.1172, + "step": 219 + }, + { + "epoch": 0.02121476315024702, + "eval_accuracy": 0.08350500747735307, + "eval_loss": 8.09375, + "eval_runtime": 238.965, + "eval_samples_per_second": 141.305, + "eval_steps_per_second": 2.21, + "step": 219 + }, + { + "epoch": 0.02131163421486002, + "grad_norm": 1.051080346107483, + "learning_rate": 9.998033517388356e-06, + "loss": 8.1172, + "step": 220 + }, + { + "epoch": 0.02131163421486002, + "eval_accuracy": 0.0834144553551839, + "eval_loss": 8.0859375, + "eval_runtime": 238.1182, + "eval_samples_per_second": 141.808, + "eval_steps_per_second": 2.217, + "step": 220 + }, + { + "epoch": 0.021408505279473022, + "grad_norm": 1.077547550201416, + "learning_rate": 9.998023830281896e-06, + "loss": 8.1562, + "step": 221 + }, + { + "epoch": 0.021408505279473022, + "eval_accuracy": 0.08347733234027067, + "eval_loss": 8.078125, + "eval_runtime": 237.0397, + "eval_samples_per_second": 142.453, + "eval_steps_per_second": 2.227, + "step": 221 + }, + { + "epoch": 0.021505376344086023, + "grad_norm": 1.069908857345581, + "learning_rate": 9.998014143175434e-06, + "loss": 8.0781, + "step": 222 + }, + { + "epoch": 0.021505376344086023, + "eval_accuracy": 0.08379307786344815, + "eval_loss": 8.078125, + "eval_runtime": 239.359, + "eval_samples_per_second": 141.073, + "eval_steps_per_second": 2.206, + "step": 222 + }, + { + "epoch": 0.02160224740869902, + "grad_norm": 1.05584716796875, + "learning_rate": 9.998004456068972e-06, + "loss": 8.1094, + "step": 223 + }, + { + "epoch": 0.02160224740869902, + "eval_accuracy": 0.08401352364679797, + "eval_loss": 8.0703125, + "eval_runtime": 239.5111, + "eval_samples_per_second": 140.983, + "eval_steps_per_second": 2.204, + "step": 223 + }, + { + "epoch": 0.02169911847331202, + "grad_norm": 1.0520967245101929, + "learning_rate": 9.997994768962512e-06, + "loss": 8.0938, + "step": 224 + }, + { + "epoch": 0.02169911847331202, + "eval_accuracy": 0.08430202826621548, + "eval_loss": 8.0625, + "eval_runtime": 240.2811, + "eval_samples_per_second": 140.531, + "eval_steps_per_second": 2.197, + "step": 224 + }, + { + "epoch": 0.021795989537925022, + "grad_norm": 1.042554497718811, + "learning_rate": 9.997985081856052e-06, + "loss": 8.0938, + "step": 225 + }, + { + "epoch": 0.021795989537925022, + "eval_accuracy": 0.08457012391947913, + "eval_loss": 8.0546875, + "eval_runtime": 239.2715, + "eval_samples_per_second": 141.124, + "eval_steps_per_second": 2.207, + "step": 225 + }, + { + "epoch": 0.021892860602538023, + "grad_norm": 1.0677285194396973, + "learning_rate": 9.99797539474959e-06, + "loss": 8.1016, + "step": 226 + }, + { + "epoch": 0.021892860602538023, + "eval_accuracy": 0.08467908753451901, + "eval_loss": 8.046875, + "eval_runtime": 237.6539, + "eval_samples_per_second": 142.085, + "eval_steps_per_second": 2.222, + "step": 226 + }, + { + "epoch": 0.02198973166715102, + "grad_norm": 1.0176194906234741, + "learning_rate": 9.997965707643128e-06, + "loss": 8.1094, + "step": 227 + }, + { + "epoch": 0.02198973166715102, + "eval_accuracy": 0.08459319618334385, + "eval_loss": 8.046875, + "eval_runtime": 240.1907, + "eval_samples_per_second": 140.584, + "eval_steps_per_second": 2.198, + "step": 227 + }, + { + "epoch": 0.02208660273176402, + "grad_norm": 1.0204542875289917, + "learning_rate": 9.997956020536667e-06, + "loss": 8.1016, + "step": 228 + }, + { + "epoch": 0.02208660273176402, + "eval_accuracy": 0.08444465943818719, + "eval_loss": 8.0390625, + "eval_runtime": 239.7402, + "eval_samples_per_second": 140.848, + "eval_steps_per_second": 2.202, + "step": 228 + }, + { + "epoch": 0.022183473796377022, + "grad_norm": 1.0234394073486328, + "learning_rate": 9.997946333430205e-06, + "loss": 8.0859, + "step": 229 + }, + { + "epoch": 0.022183473796377022, + "eval_accuracy": 0.0843871379974103, + "eval_loss": 8.03125, + "eval_runtime": 238.5255, + "eval_samples_per_second": 141.566, + "eval_steps_per_second": 2.214, + "step": 229 + }, + { + "epoch": 0.022280344860990023, + "grad_norm": 1.0190110206604004, + "learning_rate": 9.997936646323743e-06, + "loss": 8.0859, + "step": 230 + }, + { + "epoch": 0.022280344860990023, + "eval_accuracy": 0.08446454732435414, + "eval_loss": 8.03125, + "eval_runtime": 239.3718, + "eval_samples_per_second": 141.065, + "eval_steps_per_second": 2.206, + "step": 230 + }, + { + "epoch": 0.022377215925603024, + "grad_norm": 1.0486043691635132, + "learning_rate": 9.997926959217283e-06, + "loss": 8.1094, + "step": 231 + }, + { + "epoch": 0.022377215925603024, + "eval_accuracy": 0.08493841167466973, + "eval_loss": 8.0234375, + "eval_runtime": 240.0196, + "eval_samples_per_second": 140.684, + "eval_steps_per_second": 2.2, + "step": 231 + }, + { + "epoch": 0.02247408699021602, + "grad_norm": 1.023290753364563, + "learning_rate": 9.997917272110821e-06, + "loss": 8.1016, + "step": 232 + }, + { + "epoch": 0.02247408699021602, + "eval_accuracy": 0.0852934987368587, + "eval_loss": 8.015625, + "eval_runtime": 238.7993, + "eval_samples_per_second": 141.403, + "eval_steps_per_second": 2.211, + "step": 232 + }, + { + "epoch": 0.022570958054829022, + "grad_norm": 1.0117347240447998, + "learning_rate": 9.997907585004361e-06, + "loss": 8.0859, + "step": 233 + }, + { + "epoch": 0.022570958054829022, + "eval_accuracy": 0.08559141174492868, + "eval_loss": 8.0078125, + "eval_runtime": 237.5708, + "eval_samples_per_second": 142.134, + "eval_steps_per_second": 2.222, + "step": 233 + }, + { + "epoch": 0.022667829119442023, + "grad_norm": 0.9845523238182068, + "learning_rate": 9.997897897897899e-06, + "loss": 8.0859, + "step": 234 + }, + { + "epoch": 0.022667829119442023, + "eval_accuracy": 0.08566416030087853, + "eval_loss": 8.0078125, + "eval_runtime": 238.2296, + "eval_samples_per_second": 141.741, + "eval_steps_per_second": 2.216, + "step": 234 + }, + { + "epoch": 0.022764700184055024, + "grad_norm": 0.9753006100654602, + "learning_rate": 9.997888210791437e-06, + "loss": 8.0781, + "step": 235 + }, + { + "epoch": 0.022764700184055024, + "eval_accuracy": 0.08569174859129644, + "eval_loss": 8.0, + "eval_runtime": 238.7612, + "eval_samples_per_second": 141.426, + "eval_steps_per_second": 2.211, + "step": 235 + }, + { + "epoch": 0.022861571248668024, + "grad_norm": 1.0460307598114014, + "learning_rate": 9.997878523684977e-06, + "loss": 8.0234, + "step": 236 + }, + { + "epoch": 0.022861571248668024, + "eval_accuracy": 0.08559063012494832, + "eval_loss": 7.9921875, + "eval_runtime": 241.525, + "eval_samples_per_second": 139.807, + "eval_steps_per_second": 2.186, + "step": 236 + }, + { + "epoch": 0.02295844231328102, + "grad_norm": 1.0023905038833618, + "learning_rate": 9.997868836578515e-06, + "loss": 8.0391, + "step": 237 + }, + { + "epoch": 0.02295844231328102, + "eval_accuracy": 0.08547078172795972, + "eval_loss": 7.98828125, + "eval_runtime": 240.1103, + "eval_samples_per_second": 140.631, + "eval_steps_per_second": 2.199, + "step": 237 + }, + { + "epoch": 0.023055313377894023, + "grad_norm": 1.004289984703064, + "learning_rate": 9.997859149472053e-06, + "loss": 8.0078, + "step": 238 + }, + { + "epoch": 0.023055313377894023, + "eval_accuracy": 0.08553345607082936, + "eval_loss": 7.984375, + "eval_runtime": 240.4054, + "eval_samples_per_second": 140.459, + "eval_steps_per_second": 2.196, + "step": 238 + }, + { + "epoch": 0.023152184442507023, + "grad_norm": 0.9898872971534729, + "learning_rate": 9.997849462365592e-06, + "loss": 8.0078, + "step": 239 + }, + { + "epoch": 0.023152184442507023, + "eval_accuracy": 0.08570740993979181, + "eval_loss": 7.9765625, + "eval_runtime": 240.3894, + "eval_samples_per_second": 140.468, + "eval_steps_per_second": 2.196, + "step": 239 + }, + { + "epoch": 0.023249055507120024, + "grad_norm": 1.0223126411437988, + "learning_rate": 9.99783977525913e-06, + "loss": 7.9883, + "step": 240 + }, + { + "epoch": 0.023249055507120024, + "eval_accuracy": 0.08616876837042163, + "eval_loss": 7.97265625, + "eval_runtime": 237.9077, + "eval_samples_per_second": 141.933, + "eval_steps_per_second": 2.219, + "step": 240 + }, + { + "epoch": 0.023345926571733025, + "grad_norm": 0.9876830577850342, + "learning_rate": 9.997830088152668e-06, + "loss": 7.9805, + "step": 241 + }, + { + "epoch": 0.023345926571733025, + "eval_accuracy": 0.08653523234565806, + "eval_loss": 7.96484375, + "eval_runtime": 236.1897, + "eval_samples_per_second": 142.966, + "eval_steps_per_second": 2.235, + "step": 241 + }, + { + "epoch": 0.023442797636346022, + "grad_norm": 0.9565869569778442, + "learning_rate": 9.997820401046208e-06, + "loss": 8.0234, + "step": 242 + }, + { + "epoch": 0.023442797636346022, + "eval_accuracy": 0.08681360485421905, + "eval_loss": 7.9609375, + "eval_runtime": 239.1608, + "eval_samples_per_second": 141.19, + "eval_steps_per_second": 2.208, + "step": 242 + }, + { + "epoch": 0.023539668700959023, + "grad_norm": 0.9919081926345825, + "learning_rate": 9.997810713939748e-06, + "loss": 7.9961, + "step": 243 + }, + { + "epoch": 0.023539668700959023, + "eval_accuracy": 0.0869957512585312, + "eval_loss": 7.95703125, + "eval_runtime": 238.8915, + "eval_samples_per_second": 141.349, + "eval_steps_per_second": 2.21, + "step": 243 + }, + { + "epoch": 0.023636539765572024, + "grad_norm": 0.9676252007484436, + "learning_rate": 9.997801026833286e-06, + "loss": 8.0156, + "step": 244 + }, + { + "epoch": 0.023636539765572024, + "eval_accuracy": 0.08696109943940189, + "eval_loss": 7.94921875, + "eval_runtime": 239.0437, + "eval_samples_per_second": 141.259, + "eval_steps_per_second": 2.209, + "step": 244 + }, + { + "epoch": 0.023733410830185025, + "grad_norm": 0.9586087465286255, + "learning_rate": 9.997791339726824e-06, + "loss": 7.9766, + "step": 245 + }, + { + "epoch": 0.023733410830185025, + "eval_accuracy": 0.08687515019045039, + "eval_loss": 7.9453125, + "eval_runtime": 241.5167, + "eval_samples_per_second": 139.812, + "eval_steps_per_second": 2.186, + "step": 245 + }, + { + "epoch": 0.023830281894798022, + "grad_norm": 0.9658289551734924, + "learning_rate": 9.997781652620364e-06, + "loss": 7.9297, + "step": 246 + }, + { + "epoch": 0.023830281894798022, + "eval_accuracy": 0.08664124317410547, + "eval_loss": 7.94140625, + "eval_runtime": 239.9096, + "eval_samples_per_second": 140.749, + "eval_steps_per_second": 2.201, + "step": 246 + }, + { + "epoch": 0.023927152959411023, + "grad_norm": 0.9587231874465942, + "learning_rate": 9.997771965513902e-06, + "loss": 7.9336, + "step": 247 + }, + { + "epoch": 0.023927152959411023, + "eval_accuracy": 0.08649270642894882, + "eval_loss": 7.9375, + "eval_runtime": 238.655, + "eval_samples_per_second": 141.489, + "eval_steps_per_second": 2.212, + "step": 247 + }, + { + "epoch": 0.024024024024024024, + "grad_norm": 0.9744223356246948, + "learning_rate": 9.99776227840744e-06, + "loss": 7.9219, + "step": 248 + }, + { + "epoch": 0.024024024024024024, + "eval_accuracy": 0.08659249324644151, + "eval_loss": 7.9296875, + "eval_runtime": 238.0999, + "eval_samples_per_second": 141.819, + "eval_steps_per_second": 2.218, + "step": 248 + }, + { + "epoch": 0.024120895088637025, + "grad_norm": 0.9676837921142578, + "learning_rate": 9.99775259130098e-06, + "loss": 7.957, + "step": 249 + }, + { + "epoch": 0.024120895088637025, + "eval_accuracy": 0.08693261373345097, + "eval_loss": 7.92578125, + "eval_runtime": 239.9677, + "eval_samples_per_second": 140.715, + "eval_steps_per_second": 2.2, + "step": 249 + }, + { + "epoch": 0.024217766153250025, + "grad_norm": 0.9536520838737488, + "learning_rate": 9.99774290419452e-06, + "loss": 7.9453, + "step": 250 + }, + { + "epoch": 0.024217766153250025, + "eval_accuracy": 0.08742873977876275, + "eval_loss": 7.91796875, + "eval_runtime": 240.6934, + "eval_samples_per_second": 140.291, + "eval_steps_per_second": 2.194, + "step": 250 + }, + { + "epoch": 0.024314637217863023, + "grad_norm": 0.9051578044891357, + "learning_rate": 9.997733217088057e-06, + "loss": 7.9805, + "step": 251 + }, + { + "epoch": 0.024314637217863023, + "eval_accuracy": 0.08791403893990214, + "eval_loss": 7.9140625, + "eval_runtime": 241.0758, + "eval_samples_per_second": 140.068, + "eval_steps_per_second": 2.19, + "step": 251 + }, + { + "epoch": 0.024411508282476024, + "grad_norm": 0.9311773180961609, + "learning_rate": 9.997723529981595e-06, + "loss": 7.9531, + "step": 252 + }, + { + "epoch": 0.024411508282476024, + "eval_accuracy": 0.08829436943256792, + "eval_loss": 7.91015625, + "eval_runtime": 239.1867, + "eval_samples_per_second": 141.174, + "eval_steps_per_second": 2.207, + "step": 252 + }, + { + "epoch": 0.024508379347089024, + "grad_norm": 1.0077519416809082, + "learning_rate": 9.997713842875133e-06, + "loss": 7.9102, + "step": 253 + }, + { + "epoch": 0.024508379347089024, + "eval_accuracy": 0.08852494732677427, + "eval_loss": 7.90625, + "eval_runtime": 240.0697, + "eval_samples_per_second": 140.655, + "eval_steps_per_second": 2.199, + "step": 253 + }, + { + "epoch": 0.024605250411702025, + "grad_norm": 0.8876093029975891, + "learning_rate": 9.997704155768673e-06, + "loss": 7.9844, + "step": 254 + }, + { + "epoch": 0.024605250411702025, + "eval_accuracy": 0.08859361408949334, + "eval_loss": 7.8984375, + "eval_runtime": 239.2375, + "eval_samples_per_second": 141.144, + "eval_steps_per_second": 2.207, + "step": 254 + }, + { + "epoch": 0.024702121476315026, + "grad_norm": 0.9206761717796326, + "learning_rate": 9.997694468662211e-06, + "loss": 7.9414, + "step": 255 + }, + { + "epoch": 0.024702121476315026, + "eval_accuracy": 0.08849816960522489, + "eval_loss": 7.89453125, + "eval_runtime": 240.2162, + "eval_samples_per_second": 140.569, + "eval_steps_per_second": 2.198, + "step": 255 + }, + { + "epoch": 0.024798992540928023, + "grad_norm": 0.8806933164596558, + "learning_rate": 9.997684781555749e-06, + "loss": 7.9453, + "step": 256 + }, + { + "epoch": 0.024798992540928023, + "eval_accuracy": 0.088308004358892, + "eval_loss": 7.890625, + "eval_runtime": 241.0125, + "eval_samples_per_second": 140.105, + "eval_steps_per_second": 2.191, + "step": 256 + }, + { + "epoch": 0.024895863605541024, + "grad_norm": 0.9106225371360779, + "learning_rate": 9.997675094449289e-06, + "loss": 7.9219, + "step": 257 + }, + { + "epoch": 0.024895863605541024, + "eval_accuracy": 0.08826322042890615, + "eval_loss": 7.88671875, + "eval_runtime": 242.9806, + "eval_samples_per_second": 138.97, + "eval_steps_per_second": 2.173, + "step": 257 + }, + { + "epoch": 0.024992734670154025, + "grad_norm": 0.9404253959655762, + "learning_rate": 9.997665407342827e-06, + "loss": 7.9141, + "step": 258 + }, + { + "epoch": 0.024992734670154025, + "eval_accuracy": 0.08845868332177259, + "eval_loss": 7.8828125, + "eval_runtime": 239.9439, + "eval_samples_per_second": 140.729, + "eval_steps_per_second": 2.201, + "step": 258 + }, + { + "epoch": 0.025089605734767026, + "grad_norm": 0.943131685256958, + "learning_rate": 9.997655720236367e-06, + "loss": 7.9258, + "step": 259 + }, + { + "epoch": 0.025089605734767026, + "eval_accuracy": 0.08890710159939423, + "eval_loss": 7.875, + "eval_runtime": 240.2599, + "eval_samples_per_second": 140.544, + "eval_steps_per_second": 2.198, + "step": 259 + }, + { + "epoch": 0.025186476799380027, + "grad_norm": 0.8273116946220398, + "learning_rate": 9.997646033129905e-06, + "loss": 7.957, + "step": 260 + }, + { + "epoch": 0.025186476799380027, + "eval_accuracy": 0.08928497143656629, + "eval_loss": 7.87109375, + "eval_runtime": 239.6344, + "eval_samples_per_second": 140.91, + "eval_steps_per_second": 2.203, + "step": 260 + }, + { + "epoch": 0.025283347863993024, + "grad_norm": 0.8834772109985352, + "learning_rate": 9.997636346023444e-06, + "loss": 7.8984, + "step": 261 + }, + { + "epoch": 0.025283347863993024, + "eval_accuracy": 0.08963823471880107, + "eval_loss": 7.8671875, + "eval_runtime": 240.9633, + "eval_samples_per_second": 140.133, + "eval_steps_per_second": 2.191, + "step": 261 + }, + { + "epoch": 0.025380218928606025, + "grad_norm": 0.8725751638412476, + "learning_rate": 9.997626658916982e-06, + "loss": 7.8945, + "step": 262 + }, + { + "epoch": 0.025380218928606025, + "eval_accuracy": 0.08984756412909688, + "eval_loss": 7.86328125, + "eval_runtime": 239.3388, + "eval_samples_per_second": 141.085, + "eval_steps_per_second": 2.206, + "step": 262 + }, + { + "epoch": 0.025477089993219026, + "grad_norm": 0.8974217176437378, + "learning_rate": 9.99761697181052e-06, + "loss": 7.9141, + "step": 263 + }, + { + "epoch": 0.025477089993219026, + "eval_accuracy": 0.08987159170627092, + "eval_loss": 7.859375, + "eval_runtime": 239.8452, + "eval_samples_per_second": 140.787, + "eval_steps_per_second": 2.201, + "step": 263 + }, + { + "epoch": 0.025573961057832027, + "grad_norm": 0.8629518747329712, + "learning_rate": 9.99760728470406e-06, + "loss": 7.9453, + "step": 264 + }, + { + "epoch": 0.025573961057832027, + "eval_accuracy": 0.0898933323212802, + "eval_loss": 7.85546875, + "eval_runtime": 242.7767, + "eval_samples_per_second": 139.087, + "eval_steps_per_second": 2.175, + "step": 264 + }, + { + "epoch": 0.025670832122445024, + "grad_norm": 0.8912859559059143, + "learning_rate": 9.997597597597598e-06, + "loss": 7.8672, + "step": 265 + }, + { + "epoch": 0.025670832122445024, + "eval_accuracy": 0.08997965790577779, + "eval_loss": 7.84765625, + "eval_runtime": 242.1493, + "eval_samples_per_second": 139.447, + "eval_steps_per_second": 2.18, + "step": 265 + }, + { + "epoch": 0.025767703187058025, + "grad_norm": 0.8678880333900452, + "learning_rate": 9.997587910491136e-06, + "loss": 7.9375, + "step": 266 + }, + { + "epoch": 0.025767703187058025, + "eval_accuracy": 0.09024167429252752, + "eval_loss": 7.84375, + "eval_runtime": 241.9128, + "eval_samples_per_second": 139.583, + "eval_steps_per_second": 2.183, + "step": 266 + }, + { + "epoch": 0.025864574251671026, + "grad_norm": 0.8691763281822205, + "learning_rate": 9.997578223384676e-06, + "loss": 7.9219, + "step": 267 + }, + { + "epoch": 0.025864574251671026, + "eval_accuracy": 0.09048151583094556, + "eval_loss": 7.83984375, + "eval_runtime": 240.5035, + "eval_samples_per_second": 140.401, + "eval_steps_per_second": 2.195, + "step": 267 + }, + { + "epoch": 0.025961445316284026, + "grad_norm": 0.8926984071731567, + "learning_rate": 9.997568536278216e-06, + "loss": 7.8555, + "step": 268 + }, + { + "epoch": 0.025961445316284026, + "eval_accuracy": 0.09069718504774874, + "eval_loss": 7.8359375, + "eval_runtime": 239.1407, + "eval_samples_per_second": 141.201, + "eval_steps_per_second": 2.208, + "step": 268 + }, + { + "epoch": 0.026058316380897027, + "grad_norm": 0.8526946306228638, + "learning_rate": 9.997558849171754e-06, + "loss": 7.8984, + "step": 269 + }, + { + "epoch": 0.026058316380897027, + "eval_accuracy": 0.0907848133322136, + "eval_loss": 7.83203125, + "eval_runtime": 238.5966, + "eval_samples_per_second": 141.523, + "eval_steps_per_second": 2.213, + "step": 269 + }, + { + "epoch": 0.026155187445510025, + "grad_norm": 0.8387218117713928, + "learning_rate": 9.997549162065292e-06, + "loss": 7.8906, + "step": 270 + }, + { + "epoch": 0.026155187445510025, + "eval_accuracy": 0.09087632076769209, + "eval_loss": 7.828125, + "eval_runtime": 240.2401, + "eval_samples_per_second": 140.555, + "eval_steps_per_second": 2.198, + "step": 270 + }, + { + "epoch": 0.026252058510123025, + "grad_norm": 0.8393184542655945, + "learning_rate": 9.997539474958831e-06, + "loss": 7.8711, + "step": 271 + }, + { + "epoch": 0.026252058510123025, + "eval_accuracy": 0.09095222475245154, + "eval_loss": 7.82421875, + "eval_runtime": 239.8682, + "eval_samples_per_second": 140.773, + "eval_steps_per_second": 2.201, + "step": 271 + }, + { + "epoch": 0.026348929574736026, + "grad_norm": 0.8263446092605591, + "learning_rate": 9.99752978785237e-06, + "loss": 7.8633, + "step": 272 + }, + { + "epoch": 0.026348929574736026, + "eval_accuracy": 0.09090057993597143, + "eval_loss": 7.8203125, + "eval_runtime": 240.3911, + "eval_samples_per_second": 140.467, + "eval_steps_per_second": 2.196, + "step": 272 + }, + { + "epoch": 0.026445800639349027, + "grad_norm": 0.8394054770469666, + "learning_rate": 9.997520100745907e-06, + "loss": 7.8633, + "step": 273 + }, + { + "epoch": 0.026445800639349027, + "eval_accuracy": 0.09090938039797253, + "eval_loss": 7.81640625, + "eval_runtime": 238.99, + "eval_samples_per_second": 141.29, + "eval_steps_per_second": 2.209, + "step": 273 + }, + { + "epoch": 0.026542671703962028, + "grad_norm": 0.8645299077033997, + "learning_rate": 9.997510413639445e-06, + "loss": 7.8789, + "step": 274 + }, + { + "epoch": 0.026542671703962028, + "eval_accuracy": 0.09088737924296979, + "eval_loss": 7.8125, + "eval_runtime": 239.144, + "eval_samples_per_second": 141.199, + "eval_steps_per_second": 2.208, + "step": 274 + }, + { + "epoch": 0.026639542768575025, + "grad_norm": 0.832476019859314, + "learning_rate": 9.997500726532985e-06, + "loss": 7.8438, + "step": 275 + }, + { + "epoch": 0.026639542768575025, + "eval_accuracy": 0.09096122785666977, + "eval_loss": 7.80859375, + "eval_runtime": 238.0741, + "eval_samples_per_second": 141.834, + "eval_steps_per_second": 2.218, + "step": 275 + }, + { + "epoch": 0.026736413833188026, + "grad_norm": 0.8168690800666809, + "learning_rate": 9.997491039426525e-06, + "loss": 7.8789, + "step": 276 + }, + { + "epoch": 0.026736413833188026, + "eval_accuracy": 0.09111972301935398, + "eval_loss": 7.8046875, + "eval_runtime": 237.8823, + "eval_samples_per_second": 141.948, + "eval_steps_per_second": 2.22, + "step": 276 + }, + { + "epoch": 0.026833284897801027, + "grad_norm": 0.8217095732688904, + "learning_rate": 9.997481352320063e-06, + "loss": 7.8516, + "step": 277 + }, + { + "epoch": 0.026833284897801027, + "eval_accuracy": 0.09120419587500923, + "eval_loss": 7.80078125, + "eval_runtime": 238.7067, + "eval_samples_per_second": 141.458, + "eval_steps_per_second": 2.212, + "step": 277 + }, + { + "epoch": 0.026930155962414028, + "grad_norm": 0.8041301965713501, + "learning_rate": 9.997471665213601e-06, + "loss": 7.8711, + "step": 278 + }, + { + "epoch": 0.026930155962414028, + "eval_accuracy": 0.09132303106091219, + "eval_loss": 7.796875, + "eval_runtime": 239.1861, + "eval_samples_per_second": 141.175, + "eval_steps_per_second": 2.207, + "step": 278 + }, + { + "epoch": 0.02702702702702703, + "grad_norm": 0.8525278568267822, + "learning_rate": 9.99746197810714e-06, + "loss": 7.8008, + "step": 279 + }, + { + "epoch": 0.02702702702702703, + "eval_accuracy": 0.0915536379040067, + "eval_loss": 7.79296875, + "eval_runtime": 239.3931, + "eval_samples_per_second": 141.053, + "eval_steps_per_second": 2.206, + "step": 279 + }, + { + "epoch": 0.027123898091640026, + "grad_norm": 0.8100795745849609, + "learning_rate": 9.997452291000679e-06, + "loss": 7.8477, + "step": 280 + }, + { + "epoch": 0.027123898091640026, + "eval_accuracy": 0.09175946449883497, + "eval_loss": 7.7890625, + "eval_runtime": 239.2146, + "eval_samples_per_second": 141.158, + "eval_steps_per_second": 2.207, + "step": 280 + }, + { + "epoch": 0.027220769156253027, + "grad_norm": 0.8111329674720764, + "learning_rate": 9.997442603894217e-06, + "loss": 7.8086, + "step": 281 + }, + { + "epoch": 0.027220769156253027, + "eval_accuracy": 0.09185091403653714, + "eval_loss": 7.78515625, + "eval_runtime": 238.4234, + "eval_samples_per_second": 141.626, + "eval_steps_per_second": 2.215, + "step": 281 + }, + { + "epoch": 0.027317640220866028, + "grad_norm": 0.7890406847000122, + "learning_rate": 9.997432916787756e-06, + "loss": 7.8398, + "step": 282 + }, + { + "epoch": 0.027317640220866028, + "eval_accuracy": 0.09197820229778327, + "eval_loss": 7.78125, + "eval_runtime": 239.0276, + "eval_samples_per_second": 141.268, + "eval_steps_per_second": 2.209, + "step": 282 + }, + { + "epoch": 0.02741451128547903, + "grad_norm": 0.8093599677085876, + "learning_rate": 9.997423229681295e-06, + "loss": 7.8008, + "step": 283 + }, + { + "epoch": 0.02741451128547903, + "eval_accuracy": 0.09215345886671297, + "eval_loss": 7.77734375, + "eval_runtime": 236.4329, + "eval_samples_per_second": 142.819, + "eval_steps_per_second": 2.233, + "step": 283 + }, + { + "epoch": 0.02751138235009203, + "grad_norm": 0.7843554615974426, + "learning_rate": 9.997413542574834e-06, + "loss": 7.8281, + "step": 284 + }, + { + "epoch": 0.02751138235009203, + "eval_accuracy": 0.09223813436458536, + "eval_loss": 7.7734375, + "eval_runtime": 240.4286, + "eval_samples_per_second": 140.445, + "eval_steps_per_second": 2.196, + "step": 284 + }, + { + "epoch": 0.027608253414705027, + "grad_norm": 0.8685352206230164, + "learning_rate": 9.997403855468372e-06, + "loss": 7.7852, + "step": 285 + }, + { + "epoch": 0.027608253414705027, + "eval_accuracy": 0.09260729058642081, + "eval_loss": 7.76953125, + "eval_runtime": 240.1204, + "eval_samples_per_second": 140.625, + "eval_steps_per_second": 2.199, + "step": 285 + }, + { + "epoch": 0.027705124479318027, + "grad_norm": 0.810741662979126, + "learning_rate": 9.997394168361912e-06, + "loss": 7.793, + "step": 286 + }, + { + "epoch": 0.027705124479318027, + "eval_accuracy": 0.09294211342689672, + "eval_loss": 7.765625, + "eval_runtime": 240.2366, + "eval_samples_per_second": 140.557, + "eval_steps_per_second": 2.198, + "step": 286 + }, + { + "epoch": 0.027801995543931028, + "grad_norm": 0.7687424421310425, + "learning_rate": 9.99738448125545e-06, + "loss": 7.8086, + "step": 287 + }, + { + "epoch": 0.027801995543931028, + "eval_accuracy": 0.09305313241299606, + "eval_loss": 7.76171875, + "eval_runtime": 239.5713, + "eval_samples_per_second": 140.948, + "eval_steps_per_second": 2.204, + "step": 287 + }, + { + "epoch": 0.02789886660854403, + "grad_norm": 0.7878952026367188, + "learning_rate": 9.997374794148988e-06, + "loss": 7.7812, + "step": 288 + }, + { + "epoch": 0.02789886660854403, + "eval_accuracy": 0.09312049647574788, + "eval_loss": 7.7578125, + "eval_runtime": 240.4397, + "eval_samples_per_second": 140.439, + "eval_steps_per_second": 2.196, + "step": 288 + }, + { + "epoch": 0.027995737673157026, + "grad_norm": 0.7822087407112122, + "learning_rate": 9.997365107042528e-06, + "loss": 7.793, + "step": 289 + }, + { + "epoch": 0.027995737673157026, + "eval_accuracy": 0.09311163811597047, + "eval_loss": 7.75390625, + "eval_runtime": 239.2769, + "eval_samples_per_second": 141.121, + "eval_steps_per_second": 2.207, + "step": 289 + }, + { + "epoch": 0.028092608737770027, + "grad_norm": 0.8028809428215027, + "learning_rate": 9.997355419936066e-06, + "loss": 7.7539, + "step": 290 + }, + { + "epoch": 0.028092608737770027, + "eval_accuracy": 0.09305567991515429, + "eval_loss": 7.75, + "eval_runtime": 236.6986, + "eval_samples_per_second": 142.658, + "eval_steps_per_second": 2.231, + "step": 290 + }, + { + "epoch": 0.028189479802383028, + "grad_norm": 0.8122669458389282, + "learning_rate": 9.997345732829604e-06, + "loss": 7.75, + "step": 291 + }, + { + "epoch": 0.028189479802383028, + "eval_accuracy": 0.09302276502931466, + "eval_loss": 7.74609375, + "eval_runtime": 239.075, + "eval_samples_per_second": 141.24, + "eval_steps_per_second": 2.209, + "step": 291 + }, + { + "epoch": 0.02828635086699603, + "grad_norm": 0.7843779921531677, + "learning_rate": 9.997336045723144e-06, + "loss": 7.8164, + "step": 292 + }, + { + "epoch": 0.02828635086699603, + "eval_accuracy": 0.09302994435357871, + "eval_loss": 7.7421875, + "eval_runtime": 239.8333, + "eval_samples_per_second": 140.794, + "eval_steps_per_second": 2.202, + "step": 292 + }, + { + "epoch": 0.02838322193160903, + "grad_norm": 0.8030862808227539, + "learning_rate": 9.997326358616683e-06, + "loss": 7.7539, + "step": 293 + }, + { + "epoch": 0.02838322193160903, + "eval_accuracy": 0.09310758527162785, + "eval_loss": 7.7421875, + "eval_runtime": 238.9644, + "eval_samples_per_second": 141.306, + "eval_steps_per_second": 2.21, + "step": 293 + }, + { + "epoch": 0.028480092996222027, + "grad_norm": 0.7855885624885559, + "learning_rate": 9.997316671510221e-06, + "loss": 7.8086, + "step": 294 + }, + { + "epoch": 0.028480092996222027, + "eval_accuracy": 0.09324769789032951, + "eval_loss": 7.73828125, + "eval_runtime": 238.9575, + "eval_samples_per_second": 141.31, + "eval_steps_per_second": 2.21, + "step": 294 + }, + { + "epoch": 0.028576964060835028, + "grad_norm": 0.7736480832099915, + "learning_rate": 9.99730698440376e-06, + "loss": 7.793, + "step": 295 + }, + { + "epoch": 0.028576964060835028, + "eval_accuracy": 0.09355316655820965, + "eval_loss": 7.734375, + "eval_runtime": 239.2168, + "eval_samples_per_second": 141.156, + "eval_steps_per_second": 2.207, + "step": 295 + }, + { + "epoch": 0.02867383512544803, + "grad_norm": 0.7640628814697266, + "learning_rate": 9.997297297297297e-06, + "loss": 7.7695, + "step": 296 + }, + { + "epoch": 0.02867383512544803, + "eval_accuracy": 0.0937199121540199, + "eval_loss": 7.73046875, + "eval_runtime": 238.9578, + "eval_samples_per_second": 141.309, + "eval_steps_per_second": 2.21, + "step": 296 + }, + { + "epoch": 0.02877070619006103, + "grad_norm": 0.787857174873352, + "learning_rate": 9.997287610190837e-06, + "loss": 7.75, + "step": 297 + }, + { + "epoch": 0.02877070619006103, + "eval_accuracy": 0.09381628300270953, + "eval_loss": 7.7265625, + "eval_runtime": 235.9881, + "eval_samples_per_second": 143.088, + "eval_steps_per_second": 2.237, + "step": 297 + }, + { + "epoch": 0.02886757725467403, + "grad_norm": 0.7313410639762878, + "learning_rate": 9.997277923084375e-06, + "loss": 7.7891, + "step": 298 + }, + { + "epoch": 0.02886757725467403, + "eval_accuracy": 0.09376585403953219, + "eval_loss": 7.72265625, + "eval_runtime": 238.897, + "eval_samples_per_second": 141.345, + "eval_steps_per_second": 2.21, + "step": 298 + }, + { + "epoch": 0.028964448319287028, + "grad_norm": 0.7264304757118225, + "learning_rate": 9.997268235977913e-06, + "loss": 7.7773, + "step": 299 + }, + { + "epoch": 0.028964448319287028, + "eval_accuracy": 0.09357499401988342, + "eval_loss": 7.71875, + "eval_runtime": 239.7653, + "eval_samples_per_second": 140.834, + "eval_steps_per_second": 2.202, + "step": 299 + }, + { + "epoch": 0.02906131938390003, + "grad_norm": 0.8194934725761414, + "learning_rate": 9.997258548871453e-06, + "loss": 7.7227, + "step": 300 + }, + { + "epoch": 0.02906131938390003, + "eval_accuracy": 0.09352896528770664, + "eval_loss": 7.71484375, + "eval_runtime": 241.2504, + "eval_samples_per_second": 139.967, + "eval_steps_per_second": 2.189, + "step": 300 + }, + { + "epoch": 0.02915819044851303, + "grad_norm": 0.7791144251823425, + "learning_rate": 9.997248861764993e-06, + "loss": 7.7109, + "step": 301 + }, + { + "epoch": 0.02915819044851303, + "eval_accuracy": 0.09365309812014315, + "eval_loss": 7.71484375, + "eval_runtime": 240.0076, + "eval_samples_per_second": 140.691, + "eval_steps_per_second": 2.2, + "step": 301 + }, + { + "epoch": 0.02925506151312603, + "grad_norm": 0.8002768754959106, + "learning_rate": 9.99723917465853e-06, + "loss": 7.7148, + "step": 302 + }, + { + "epoch": 0.02925506151312603, + "eval_accuracy": 0.09385024004852296, + "eval_loss": 7.7109375, + "eval_runtime": 238.1093, + "eval_samples_per_second": 141.813, + "eval_steps_per_second": 2.217, + "step": 302 + }, + { + "epoch": 0.02935193257773903, + "grad_norm": 0.7393519282341003, + "learning_rate": 9.997229487552069e-06, + "loss": 7.7812, + "step": 303 + }, + { + "epoch": 0.02935193257773903, + "eval_accuracy": 0.09395888522579307, + "eval_loss": 7.70703125, + "eval_runtime": 237.8539, + "eval_samples_per_second": 141.965, + "eval_steps_per_second": 2.22, + "step": 303 + }, + { + "epoch": 0.02944880364235203, + "grad_norm": 0.7291700839996338, + "learning_rate": 9.997219800445608e-06, + "loss": 7.7109, + "step": 304 + }, + { + "epoch": 0.02944880364235203, + "eval_accuracy": 0.0940500742235018, + "eval_loss": 7.703125, + "eval_runtime": 237.0915, + "eval_samples_per_second": 142.422, + "eval_steps_per_second": 2.227, + "step": 304 + }, + { + "epoch": 0.02954567470696503, + "grad_norm": 0.7372825145721436, + "learning_rate": 9.997210113339146e-06, + "loss": 7.7539, + "step": 305 + }, + { + "epoch": 0.02954567470696503, + "eval_accuracy": 0.09420005841306653, + "eval_loss": 7.69921875, + "eval_runtime": 238.3146, + "eval_samples_per_second": 141.691, + "eval_steps_per_second": 2.216, + "step": 305 + }, + { + "epoch": 0.02964254577157803, + "grad_norm": 0.7321212887763977, + "learning_rate": 9.997200426232684e-06, + "loss": 7.7734, + "step": 306 + }, + { + "epoch": 0.02964254577157803, + "eval_accuracy": 0.09429781880838792, + "eval_loss": 7.69921875, + "eval_runtime": 241.1284, + "eval_samples_per_second": 140.037, + "eval_steps_per_second": 2.19, + "step": 306 + }, + { + "epoch": 0.02973941683619103, + "grad_norm": 0.733534574508667, + "learning_rate": 9.997190739126224e-06, + "loss": 7.6914, + "step": 307 + }, + { + "epoch": 0.02973941683619103, + "eval_accuracy": 0.09434127108951833, + "eval_loss": 7.6953125, + "eval_runtime": 238.2743, + "eval_samples_per_second": 141.715, + "eval_steps_per_second": 2.216, + "step": 307 + }, + { + "epoch": 0.029836287900804028, + "grad_norm": 0.7814671993255615, + "learning_rate": 9.997181052019762e-06, + "loss": 7.6445, + "step": 308 + }, + { + "epoch": 0.029836287900804028, + "eval_accuracy": 0.09439731613699899, + "eval_loss": 7.69140625, + "eval_runtime": 236.2657, + "eval_samples_per_second": 142.92, + "eval_steps_per_second": 2.235, + "step": 308 + }, + { + "epoch": 0.02993315896541703, + "grad_norm": 0.7276116609573364, + "learning_rate": 9.997171364913302e-06, + "loss": 7.6953, + "step": 309 + }, + { + "epoch": 0.02993315896541703, + "eval_accuracy": 0.09446468019975081, + "eval_loss": 7.6875, + "eval_runtime": 235.6433, + "eval_samples_per_second": 143.297, + "eval_steps_per_second": 2.241, + "step": 309 + }, + { + "epoch": 0.03003003003003003, + "grad_norm": 0.7116464376449585, + "learning_rate": 9.99716167780684e-06, + "loss": 7.75, + "step": 310 + }, + { + "epoch": 0.03003003003003003, + "eval_accuracy": 0.09461590919150648, + "eval_loss": 7.68359375, + "eval_runtime": 237.3533, + "eval_samples_per_second": 142.265, + "eval_steps_per_second": 2.225, + "step": 310 + }, + { + "epoch": 0.03012690109464303, + "grad_norm": 0.7537593245506287, + "learning_rate": 9.99715199070038e-06, + "loss": 7.7539, + "step": 311 + }, + { + "epoch": 0.03012690109464303, + "eval_accuracy": 0.09491029043522077, + "eval_loss": 7.68359375, + "eval_runtime": 236.2372, + "eval_samples_per_second": 142.937, + "eval_steps_per_second": 2.235, + "step": 311 + }, + { + "epoch": 0.03022377215925603, + "grad_norm": 0.7783864140510559, + "learning_rate": 9.997142303593918e-06, + "loss": 7.6953, + "step": 312 + }, + { + "epoch": 0.03022377215925603, + "eval_accuracy": 0.0951206620054904, + "eval_loss": 7.6796875, + "eval_runtime": 235.999, + "eval_samples_per_second": 143.081, + "eval_steps_per_second": 2.237, + "step": 312 + }, + { + "epoch": 0.03032064322386903, + "grad_norm": 0.7092785835266113, + "learning_rate": 9.997132616487456e-06, + "loss": 7.7188, + "step": 313 + }, + { + "epoch": 0.03032064322386903, + "eval_accuracy": 0.09514008670944675, + "eval_loss": 7.67578125, + "eval_runtime": 236.3642, + "eval_samples_per_second": 142.86, + "eval_steps_per_second": 2.234, + "step": 313 + }, + { + "epoch": 0.03041751428848203, + "grad_norm": 0.7478684782981873, + "learning_rate": 9.997122929380995e-06, + "loss": 7.6914, + "step": 314 + }, + { + "epoch": 0.03041751428848203, + "eval_accuracy": 0.09526714337958758, + "eval_loss": 7.671875, + "eval_runtime": 235.6142, + "eval_samples_per_second": 143.315, + "eval_steps_per_second": 2.241, + "step": 314 + }, + { + "epoch": 0.03051438535309503, + "grad_norm": 0.7141132354736328, + "learning_rate": 9.997113242274533e-06, + "loss": 7.7344, + "step": 315 + }, + { + "epoch": 0.03051438535309503, + "eval_accuracy": 0.09541362475368477, + "eval_loss": 7.671875, + "eval_runtime": 237.3782, + "eval_samples_per_second": 142.25, + "eval_steps_per_second": 2.224, + "step": 315 + }, + { + "epoch": 0.03061125641770803, + "grad_norm": 0.677810549736023, + "learning_rate": 9.997103555168072e-06, + "loss": 7.7383, + "step": 316 + }, + { + "epoch": 0.03061125641770803, + "eval_accuracy": 0.0953166749272319, + "eval_loss": 7.66796875, + "eval_runtime": 237.8956, + "eval_samples_per_second": 141.94, + "eval_steps_per_second": 2.219, + "step": 316 + }, + { + "epoch": 0.030708127482321032, + "grad_norm": 0.6948665976524353, + "learning_rate": 9.99709386806161e-06, + "loss": 7.6875, + "step": 317 + }, + { + "epoch": 0.030708127482321032, + "eval_accuracy": 0.09496401957164852, + "eval_loss": 7.6640625, + "eval_runtime": 236.596, + "eval_samples_per_second": 142.72, + "eval_steps_per_second": 2.232, + "step": 317 + }, + { + "epoch": 0.03080499854693403, + "grad_norm": 0.7147016525268555, + "learning_rate": 9.99708418095515e-06, + "loss": 7.6914, + "step": 318 + }, + { + "epoch": 0.03080499854693403, + "eval_accuracy": 0.09470200318489878, + "eval_loss": 7.66015625, + "eval_runtime": 235.4121, + "eval_samples_per_second": 143.438, + "eval_steps_per_second": 2.243, + "step": 318 + }, + { + "epoch": 0.03090186961154703, + "grad_norm": 0.7114992141723633, + "learning_rate": 9.997074493848689e-06, + "loss": 7.6758, + "step": 319 + }, + { + "epoch": 0.03090186961154703, + "eval_accuracy": 0.09453548918019383, + "eval_loss": 7.66015625, + "eval_runtime": 235.7073, + "eval_samples_per_second": 143.258, + "eval_steps_per_second": 2.24, + "step": 319 + }, + { + "epoch": 0.03099874067616003, + "grad_norm": 0.7744684219360352, + "learning_rate": 9.997064806742227e-06, + "loss": 7.6836, + "step": 320 + }, + { + "epoch": 0.03099874067616003, + "eval_accuracy": 0.0947446159482725, + "eval_loss": 7.65625, + "eval_runtime": 236.6536, + "eval_samples_per_second": 142.685, + "eval_steps_per_second": 2.231, + "step": 320 + }, + { + "epoch": 0.031095611740773032, + "grad_norm": 0.6939721703529358, + "learning_rate": 9.997055119635765e-06, + "loss": 7.6914, + "step": 321 + }, + { + "epoch": 0.031095611740773032, + "eval_accuracy": 0.09504519225405336, + "eval_loss": 7.65234375, + "eval_runtime": 236.3373, + "eval_samples_per_second": 142.876, + "eval_steps_per_second": 2.234, + "step": 321 + }, + { + "epoch": 0.031192482805386033, + "grad_norm": 0.7224457859992981, + "learning_rate": 9.997045432529305e-06, + "loss": 7.6719, + "step": 322 + }, + { + "epoch": 0.031192482805386033, + "eval_accuracy": 0.0953886418632014, + "eval_loss": 7.65234375, + "eval_runtime": 236.1013, + "eval_samples_per_second": 143.019, + "eval_steps_per_second": 2.236, + "step": 322 + }, + { + "epoch": 0.03128935386999903, + "grad_norm": 0.6798779368400574, + "learning_rate": 9.997035745422843e-06, + "loss": 7.6914, + "step": 323 + }, + { + "epoch": 0.03128935386999903, + "eval_accuracy": 0.09575362944514158, + "eval_loss": 7.6484375, + "eval_runtime": 236.3544, + "eval_samples_per_second": 142.866, + "eval_steps_per_second": 2.234, + "step": 323 + }, + { + "epoch": 0.03138622493461203, + "grad_norm": 0.7235939502716064, + "learning_rate": 9.99702605831638e-06, + "loss": 7.6094, + "step": 324 + }, + { + "epoch": 0.03138622493461203, + "eval_accuracy": 0.09607695957701737, + "eval_loss": 7.64453125, + "eval_runtime": 236.9857, + "eval_samples_per_second": 142.485, + "eval_steps_per_second": 2.228, + "step": 324 + }, + { + "epoch": 0.03148309599922503, + "grad_norm": 0.6780532002449036, + "learning_rate": 9.99701637120992e-06, + "loss": 7.7148, + "step": 325 + }, + { + "epoch": 0.03148309599922503, + "eval_accuracy": 0.09617480681900324, + "eval_loss": 7.640625, + "eval_runtime": 236.9965, + "eval_samples_per_second": 142.479, + "eval_steps_per_second": 2.228, + "step": 325 + }, + { + "epoch": 0.03157996706383803, + "grad_norm": 0.7239165306091309, + "learning_rate": 9.99700668410346e-06, + "loss": 7.6641, + "step": 326 + }, + { + "epoch": 0.03157996706383803, + "eval_accuracy": 0.09612828595572771, + "eval_loss": 7.640625, + "eval_runtime": 236.7231, + "eval_samples_per_second": 142.643, + "eval_steps_per_second": 2.23, + "step": 326 + }, + { + "epoch": 0.03167683812845103, + "grad_norm": 0.6952512860298157, + "learning_rate": 9.996996996996998e-06, + "loss": 7.6602, + "step": 327 + }, + { + "epoch": 0.03167683812845103, + "eval_accuracy": 0.09610260829192846, + "eval_loss": 7.63671875, + "eval_runtime": 237.3447, + "eval_samples_per_second": 142.27, + "eval_steps_per_second": 2.225, + "step": 327 + }, + { + "epoch": 0.031773709193064034, + "grad_norm": 0.6919338703155518, + "learning_rate": 9.996987309890536e-06, + "loss": 7.7031, + "step": 328 + }, + { + "epoch": 0.031773709193064034, + "eval_accuracy": 0.0962992001914332, + "eval_loss": 7.6328125, + "eval_runtime": 236.9539, + "eval_samples_per_second": 142.505, + "eval_steps_per_second": 2.228, + "step": 328 + }, + { + "epoch": 0.031870580257677035, + "grad_norm": 0.6624383926391602, + "learning_rate": 9.996977622784076e-06, + "loss": 7.6953, + "step": 329 + }, + { + "epoch": 0.031870580257677035, + "eval_accuracy": 0.09658234926654084, + "eval_loss": 7.6328125, + "eval_runtime": 237.5409, + "eval_samples_per_second": 142.152, + "eval_steps_per_second": 2.223, + "step": 329 + }, + { + "epoch": 0.03196745132229003, + "grad_norm": 0.6538208723068237, + "learning_rate": 9.996967935677614e-06, + "loss": 7.6445, + "step": 330 + }, + { + "epoch": 0.03196745132229003, + "eval_accuracy": 0.09676490095528725, + "eval_loss": 7.62890625, + "eval_runtime": 236.9649, + "eval_samples_per_second": 142.498, + "eval_steps_per_second": 2.228, + "step": 330 + }, + { + "epoch": 0.03206432238690303, + "grad_norm": 0.6456217765808105, + "learning_rate": 9.996958248571152e-06, + "loss": 7.6445, + "step": 331 + }, + { + "epoch": 0.03206432238690303, + "eval_accuracy": 0.09686503515943788, + "eval_loss": 7.625, + "eval_runtime": 236.8552, + "eval_samples_per_second": 142.564, + "eval_steps_per_second": 2.229, + "step": 331 + }, + { + "epoch": 0.03216119345151603, + "grad_norm": 0.6584651470184326, + "learning_rate": 9.996948561464692e-06, + "loss": 7.6445, + "step": 332 + }, + { + "epoch": 0.03216119345151603, + "eval_accuracy": 0.09685333980862064, + "eval_loss": 7.625, + "eval_runtime": 235.6971, + "eval_samples_per_second": 143.264, + "eval_steps_per_second": 2.24, + "step": 332 + }, + { + "epoch": 0.03225806451612903, + "grad_norm": 0.6445140242576599, + "learning_rate": 9.99693887435823e-06, + "loss": 7.668, + "step": 333 + }, + { + "epoch": 0.03225806451612903, + "eval_accuracy": 0.09675618733995064, + "eval_loss": 7.62109375, + "eval_runtime": 236.584, + "eval_samples_per_second": 142.727, + "eval_steps_per_second": 2.232, + "step": 333 + }, + { + "epoch": 0.03235493558074203, + "grad_norm": 0.6661810874938965, + "learning_rate": 9.996929187251768e-06, + "loss": 7.6523, + "step": 334 + }, + { + "epoch": 0.03235493558074203, + "eval_accuracy": 0.09667113550653215, + "eval_loss": 7.6171875, + "eval_runtime": 237.5698, + "eval_samples_per_second": 142.135, + "eval_steps_per_second": 2.223, + "step": 334 + }, + { + "epoch": 0.03245180664535503, + "grad_norm": 0.6913946270942688, + "learning_rate": 9.996919500145308e-06, + "loss": 7.6602, + "step": 335 + }, + { + "epoch": 0.03245180664535503, + "eval_accuracy": 0.0968231461182682, + "eval_loss": 7.6171875, + "eval_runtime": 236.2729, + "eval_samples_per_second": 142.915, + "eval_steps_per_second": 2.235, + "step": 335 + }, + { + "epoch": 0.032548677709968034, + "grad_norm": 0.6751811504364014, + "learning_rate": 9.996909813038846e-06, + "loss": 7.6328, + "step": 336 + }, + { + "epoch": 0.032548677709968034, + "eval_accuracy": 0.09719745524219639, + "eval_loss": 7.61328125, + "eval_runtime": 236.6177, + "eval_samples_per_second": 142.707, + "eval_steps_per_second": 2.231, + "step": 336 + }, + { + "epoch": 0.032645548774581035, + "grad_norm": 0.6774271130561829, + "learning_rate": 9.996900125932385e-06, + "loss": 7.6523, + "step": 337 + }, + { + "epoch": 0.032645548774581035, + "eval_accuracy": 0.09763750729113935, + "eval_loss": 7.609375, + "eval_runtime": 236.1388, + "eval_samples_per_second": 142.996, + "eval_steps_per_second": 2.236, + "step": 337 + }, + { + "epoch": 0.032742419839194035, + "grad_norm": 0.6921724677085876, + "learning_rate": 9.996890438825923e-06, + "loss": 7.6133, + "step": 338 + }, + { + "epoch": 0.032742419839194035, + "eval_accuracy": 0.09806679035368622, + "eval_loss": 7.609375, + "eval_runtime": 237.6892, + "eval_samples_per_second": 142.064, + "eval_steps_per_second": 2.221, + "step": 338 + }, + { + "epoch": 0.032839290903807036, + "grad_norm": 0.6743577122688293, + "learning_rate": 9.996880751719461e-06, + "loss": 7.6367, + "step": 339 + }, + { + "epoch": 0.032839290903807036, + "eval_accuracy": 0.09835668451973549, + "eval_loss": 7.60546875, + "eval_runtime": 236.3158, + "eval_samples_per_second": 142.889, + "eval_steps_per_second": 2.234, + "step": 339 + }, + { + "epoch": 0.03293616196842003, + "grad_norm": 0.7336851358413696, + "learning_rate": 9.996871064613001e-06, + "loss": 7.6641, + "step": 340 + }, + { + "epoch": 0.03293616196842003, + "eval_accuracy": 0.09847195899239458, + "eval_loss": 7.6015625, + "eval_runtime": 235.9339, + "eval_samples_per_second": 143.121, + "eval_steps_per_second": 2.238, + "step": 340 + }, + { + "epoch": 0.03303303303303303, + "grad_norm": 0.6606389880180359, + "learning_rate": 9.99686137750654e-06, + "loss": 7.6367, + "step": 341 + }, + { + "epoch": 0.03303303303303303, + "eval_accuracy": 0.09851552706907764, + "eval_loss": 7.6015625, + "eval_runtime": 236.0582, + "eval_samples_per_second": 143.045, + "eval_steps_per_second": 2.237, + "step": 341 + }, + { + "epoch": 0.03312990409764603, + "grad_norm": 0.6327222585678101, + "learning_rate": 9.996851690400077e-06, + "loss": 7.6133, + "step": 342 + }, + { + "epoch": 0.03312990409764603, + "eval_accuracy": 0.09849986572058227, + "eval_loss": 7.59765625, + "eval_runtime": 239.9306, + "eval_samples_per_second": 140.737, + "eval_steps_per_second": 2.201, + "step": 342 + }, + { + "epoch": 0.03322677516225903, + "grad_norm": 0.6791363954544067, + "learning_rate": 9.996842003293617e-06, + "loss": 7.6016, + "step": 343 + }, + { + "epoch": 0.03322677516225903, + "eval_accuracy": 0.09839912358978024, + "eval_loss": 7.59765625, + "eval_runtime": 238.699, + "eval_samples_per_second": 141.463, + "eval_steps_per_second": 2.212, + "step": 343 + }, + { + "epoch": 0.033323646226872033, + "grad_norm": 0.6186023354530334, + "learning_rate": 9.996832316187157e-06, + "loss": 7.668, + "step": 344 + }, + { + "epoch": 0.033323646226872033, + "eval_accuracy": 0.09836293747957837, + "eval_loss": 7.59375, + "eval_runtime": 239.8775, + "eval_samples_per_second": 140.768, + "eval_steps_per_second": 2.201, + "step": 344 + }, + { + "epoch": 0.033420517291485034, + "grad_norm": 0.6474988460540771, + "learning_rate": 9.996822629080695e-06, + "loss": 7.6172, + "step": 345 + }, + { + "epoch": 0.033420517291485034, + "eval_accuracy": 0.09842074840923688, + "eval_loss": 7.58984375, + "eval_runtime": 237.6838, + "eval_samples_per_second": 142.067, + "eval_steps_per_second": 2.221, + "step": 345 + }, + { + "epoch": 0.033517388356098035, + "grad_norm": 0.6356053352355957, + "learning_rate": 9.996812941974233e-06, + "loss": 7.6016, + "step": 346 + }, + { + "epoch": 0.033517388356098035, + "eval_accuracy": 0.09849783929841095, + "eval_loss": 7.58984375, + "eval_runtime": 236.5606, + "eval_samples_per_second": 142.741, + "eval_steps_per_second": 2.232, + "step": 346 + }, + { + "epoch": 0.033614259420711036, + "grad_norm": 0.6287916898727417, + "learning_rate": 9.996803254867772e-06, + "loss": 7.6328, + "step": 347 + }, + { + "epoch": 0.033614259420711036, + "eval_accuracy": 0.0984772855878163, + "eval_loss": 7.5859375, + "eval_runtime": 235.9208, + "eval_samples_per_second": 143.129, + "eval_steps_per_second": 2.238, + "step": 347 + }, + { + "epoch": 0.03371113048532404, + "grad_norm": 0.602911114692688, + "learning_rate": 9.99679356776131e-06, + "loss": 7.668, + "step": 348 + }, + { + "epoch": 0.03371113048532404, + "eval_accuracy": 0.09856062943683325, + "eval_loss": 7.58203125, + "eval_runtime": 235.2916, + "eval_samples_per_second": 143.511, + "eval_steps_per_second": 2.244, + "step": 348 + }, + { + "epoch": 0.03380800154993703, + "grad_norm": 0.6358947157859802, + "learning_rate": 9.996783880654848e-06, + "loss": 7.6719, + "step": 349 + }, + { + "epoch": 0.03380800154993703, + "eval_accuracy": 0.09871625865958947, + "eval_loss": 7.58203125, + "eval_runtime": 237.9978, + "eval_samples_per_second": 141.879, + "eval_steps_per_second": 2.219, + "step": 349 + }, + { + "epoch": 0.03390487261455003, + "grad_norm": 0.6221932768821716, + "learning_rate": 9.996774193548388e-06, + "loss": 7.6602, + "step": 350 + }, + { + "epoch": 0.03390487261455003, + "eval_accuracy": 0.09892819346981982, + "eval_loss": 7.578125, + "eval_runtime": 235.489, + "eval_samples_per_second": 143.391, + "eval_steps_per_second": 2.242, + "step": 350 + }, + { + "epoch": 0.03400174367916303, + "grad_norm": 0.6026197075843811, + "learning_rate": 9.996764506441926e-06, + "loss": 7.6641, + "step": 351 + }, + { + "epoch": 0.03400174367916303, + "eval_accuracy": 0.09917735655022585, + "eval_loss": 7.57421875, + "eval_runtime": 236.3887, + "eval_samples_per_second": 142.845, + "eval_steps_per_second": 2.234, + "step": 351 + }, + { + "epoch": 0.03409861474377603, + "grad_norm": 0.6385203003883362, + "learning_rate": 9.996754819335466e-06, + "loss": 7.6445, + "step": 352 + }, + { + "epoch": 0.03409861474377603, + "eval_accuracy": 0.09936850605875623, + "eval_loss": 7.57421875, + "eval_runtime": 236.1623, + "eval_samples_per_second": 142.982, + "eval_steps_per_second": 2.236, + "step": 352 + }, + { + "epoch": 0.034195485808389034, + "grad_norm": 0.6434333324432373, + "learning_rate": 9.996745132229004e-06, + "loss": 7.5781, + "step": 353 + }, + { + "epoch": 0.034195485808389034, + "eval_accuracy": 0.09951446635286651, + "eval_loss": 7.5703125, + "eval_runtime": 236.8614, + "eval_samples_per_second": 142.56, + "eval_steps_per_second": 2.229, + "step": 353 + }, + { + "epoch": 0.034292356873002035, + "grad_norm": 0.588945209980011, + "learning_rate": 9.996735445122544e-06, + "loss": 7.6523, + "step": 354 + }, + { + "epoch": 0.034292356873002035, + "eval_accuracy": 0.09960855023939139, + "eval_loss": 7.5703125, + "eval_runtime": 238.835, + "eval_samples_per_second": 141.382, + "eval_steps_per_second": 2.211, + "step": 354 + }, + { + "epoch": 0.034389227937615036, + "grad_norm": 0.6065830588340759, + "learning_rate": 9.996725758016082e-06, + "loss": 7.6562, + "step": 355 + }, + { + "epoch": 0.034389227937615036, + "eval_accuracy": 0.09964855760283058, + "eval_loss": 7.56640625, + "eval_runtime": 237.4072, + "eval_samples_per_second": 142.232, + "eval_steps_per_second": 2.224, + "step": 355 + }, + { + "epoch": 0.034486099002228036, + "grad_norm": 0.6374432444572449, + "learning_rate": 9.99671607090962e-06, + "loss": 7.5977, + "step": 356 + }, + { + "epoch": 0.034486099002228036, + "eval_accuracy": 0.09976296360884482, + "eval_loss": 7.56640625, + "eval_runtime": 237.2058, + "eval_samples_per_second": 142.353, + "eval_steps_per_second": 2.226, + "step": 356 + }, + { + "epoch": 0.03458297006684104, + "grad_norm": 0.6186094284057617, + "learning_rate": 9.996706383803158e-06, + "loss": 7.5977, + "step": 357 + }, + { + "epoch": 0.03458297006684104, + "eval_accuracy": 0.09979237567921691, + "eval_loss": 7.5625, + "eval_runtime": 237.4024, + "eval_samples_per_second": 142.235, + "eval_steps_per_second": 2.224, + "step": 357 + }, + { + "epoch": 0.03467984113145404, + "grad_norm": 0.6533841490745544, + "learning_rate": 9.996696696696698e-06, + "loss": 7.5508, + "step": 358 + }, + { + "epoch": 0.03467984113145404, + "eval_accuracy": 0.09973910972499975, + "eval_loss": 7.5625, + "eval_runtime": 236.1905, + "eval_samples_per_second": 142.965, + "eval_steps_per_second": 2.235, + "step": 358 + }, + { + "epoch": 0.03477671219606703, + "grad_norm": 0.6210293769836426, + "learning_rate": 9.996687009590236e-06, + "loss": 7.6172, + "step": 359 + }, + { + "epoch": 0.03477671219606703, + "eval_accuracy": 0.09971864286106957, + "eval_loss": 7.55859375, + "eval_runtime": 237.087, + "eval_samples_per_second": 142.425, + "eval_steps_per_second": 2.227, + "step": 359 + }, + { + "epoch": 0.03487358326068003, + "grad_norm": 0.6240441799163818, + "learning_rate": 9.996677322483775e-06, + "loss": 7.5469, + "step": 360 + }, + { + "epoch": 0.03487358326068003, + "eval_accuracy": 0.09969887077045526, + "eval_loss": 7.5546875, + "eval_runtime": 236.921, + "eval_samples_per_second": 142.524, + "eval_steps_per_second": 2.229, + "step": 360 + }, + { + "epoch": 0.034970454325293034, + "grad_norm": 0.593199610710144, + "learning_rate": 9.996667635377313e-06, + "loss": 7.6172, + "step": 361 + }, + { + "epoch": 0.034970454325293034, + "eval_accuracy": 0.09969548375054037, + "eval_loss": 7.5546875, + "eval_runtime": 237.3099, + "eval_samples_per_second": 142.291, + "eval_steps_per_second": 2.225, + "step": 361 + }, + { + "epoch": 0.035067325389906034, + "grad_norm": 0.6026429533958435, + "learning_rate": 9.996657948270853e-06, + "loss": 7.625, + "step": 362 + }, + { + "epoch": 0.035067325389906034, + "eval_accuracy": 0.0997558421823571, + "eval_loss": 7.55078125, + "eval_runtime": 236.3278, + "eval_samples_per_second": 142.882, + "eval_steps_per_second": 2.234, + "step": 362 + }, + { + "epoch": 0.035164196454519035, + "grad_norm": 0.5891857743263245, + "learning_rate": 9.996648261164391e-06, + "loss": 7.6289, + "step": 363 + }, + { + "epoch": 0.035164196454519035, + "eval_accuracy": 0.09990139719203311, + "eval_loss": 7.55078125, + "eval_runtime": 236.9824, + "eval_samples_per_second": 142.487, + "eval_steps_per_second": 2.228, + "step": 363 + }, + { + "epoch": 0.035261067519132036, + "grad_norm": 0.628919780254364, + "learning_rate": 9.996638574057929e-06, + "loss": 7.5234, + "step": 364 + }, + { + "epoch": 0.035261067519132036, + "eval_accuracy": 0.10019818119346481, + "eval_loss": 7.546875, + "eval_runtime": 238.3945, + "eval_samples_per_second": 141.643, + "eval_steps_per_second": 2.215, + "step": 364 + }, + { + "epoch": 0.03535793858374504, + "grad_norm": 0.6015390157699585, + "learning_rate": 9.996628886951469e-06, + "loss": 7.5703, + "step": 365 + }, + { + "epoch": 0.03535793858374504, + "eval_accuracy": 0.10060615787432482, + "eval_loss": 7.54296875, + "eval_runtime": 235.2415, + "eval_samples_per_second": 143.542, + "eval_steps_per_second": 2.245, + "step": 365 + }, + { + "epoch": 0.03545480964835804, + "grad_norm": 0.5987712740898132, + "learning_rate": 9.996619199845007e-06, + "loss": 7.5859, + "step": 366 + }, + { + "epoch": 0.03545480964835804, + "eval_accuracy": 0.1009971705067222, + "eval_loss": 7.54296875, + "eval_runtime": 237.4998, + "eval_samples_per_second": 142.177, + "eval_steps_per_second": 2.223, + "step": 366 + }, + { + "epoch": 0.03555168071297104, + "grad_norm": 0.6239945888519287, + "learning_rate": 9.996609512738545e-06, + "loss": 7.5469, + "step": 367 + }, + { + "epoch": 0.03555168071297104, + "eval_accuracy": 0.10135602092437215, + "eval_loss": 7.5390625, + "eval_runtime": 238.6262, + "eval_samples_per_second": 141.506, + "eval_steps_per_second": 2.213, + "step": 367 + }, + { + "epoch": 0.03564855177758403, + "grad_norm": 0.5930135250091553, + "learning_rate": 9.996599825632085e-06, + "loss": 7.5508, + "step": 368 + }, + { + "epoch": 0.03564855177758403, + "eval_accuracy": 0.10160049428489602, + "eval_loss": 7.5390625, + "eval_runtime": 241.151, + "eval_samples_per_second": 140.024, + "eval_steps_per_second": 2.189, + "step": 368 + }, + { + "epoch": 0.03574542284219703, + "grad_norm": 0.5912957191467285, + "learning_rate": 9.996590138525624e-06, + "loss": 7.6172, + "step": 369 + }, + { + "epoch": 0.03574542284219703, + "eval_accuracy": 0.10172242700183226, + "eval_loss": 7.53515625, + "eval_runtime": 236.1926, + "eval_samples_per_second": 142.964, + "eval_steps_per_second": 2.235, + "step": 369 + }, + { + "epoch": 0.035842293906810034, + "grad_norm": 0.5632056593894958, + "learning_rate": 9.996580451419162e-06, + "loss": 7.6172, + "step": 370 + }, + { + "epoch": 0.035842293906810034, + "eval_accuracy": 0.1017233823151416, + "eval_loss": 7.53515625, + "eval_runtime": 236.4678, + "eval_samples_per_second": 142.797, + "eval_steps_per_second": 2.233, + "step": 370 + }, + { + "epoch": 0.035939164971423035, + "grad_norm": 0.5804527401924133, + "learning_rate": 9.9965707643127e-06, + "loss": 7.5352, + "step": 371 + }, + { + "epoch": 0.035939164971423035, + "eval_accuracy": 0.10176124746085684, + "eval_loss": 7.53125, + "eval_runtime": 236.525, + "eval_samples_per_second": 142.763, + "eval_steps_per_second": 2.232, + "step": 371 + }, + { + "epoch": 0.036036036036036036, + "grad_norm": 0.5636327862739563, + "learning_rate": 9.99656107720624e-06, + "loss": 7.5859, + "step": 372 + }, + { + "epoch": 0.036036036036036036, + "eval_accuracy": 0.10177870364041822, + "eval_loss": 7.53125, + "eval_runtime": 235.9325, + "eval_samples_per_second": 143.121, + "eval_steps_per_second": 2.238, + "step": 372 + }, + { + "epoch": 0.03613290710064904, + "grad_norm": 0.5637556910514832, + "learning_rate": 9.996551390099778e-06, + "loss": 7.5586, + "step": 373 + }, + { + "epoch": 0.03613290710064904, + "eval_accuracy": 0.10174599139679573, + "eval_loss": 7.52734375, + "eval_runtime": 237.5048, + "eval_samples_per_second": 142.174, + "eval_steps_per_second": 2.223, + "step": 373 + }, + { + "epoch": 0.03622977816526204, + "grad_norm": 0.5569087862968445, + "learning_rate": 9.996541702993316e-06, + "loss": 7.6406, + "step": 374 + }, + { + "epoch": 0.03622977816526204, + "eval_accuracy": 0.10170641826667895, + "eval_loss": 7.52734375, + "eval_runtime": 238.2389, + "eval_samples_per_second": 141.736, + "eval_steps_per_second": 2.216, + "step": 374 + }, + { + "epoch": 0.03632664922987504, + "grad_norm": 0.5960782766342163, + "learning_rate": 9.996532015886856e-06, + "loss": 7.5273, + "step": 375 + }, + { + "epoch": 0.03632664922987504, + "eval_accuracy": 0.10178799623351806, + "eval_loss": 7.5234375, + "eval_runtime": 236.2956, + "eval_samples_per_second": 142.902, + "eval_steps_per_second": 2.234, + "step": 375 + }, + { + "epoch": 0.03642352029448804, + "grad_norm": 0.5876879096031189, + "learning_rate": 9.996522328780394e-06, + "loss": 7.5312, + "step": 376 + }, + { + "epoch": 0.03642352029448804, + "eval_accuracy": 0.10199868624155746, + "eval_loss": 7.51953125, + "eval_runtime": 236.7211, + "eval_samples_per_second": 142.645, + "eval_steps_per_second": 2.23, + "step": 376 + }, + { + "epoch": 0.03652039135910104, + "grad_norm": 0.5734599828720093, + "learning_rate": 9.996512641673934e-06, + "loss": 7.5898, + "step": 377 + }, + { + "epoch": 0.03652039135910104, + "eval_accuracy": 0.10233654871529031, + "eval_loss": 7.51953125, + "eval_runtime": 237.8605, + "eval_samples_per_second": 141.961, + "eval_steps_per_second": 2.22, + "step": 377 + }, + { + "epoch": 0.036617262423714034, + "grad_norm": 0.6157567501068115, + "learning_rate": 9.996502954567472e-06, + "loss": 7.5898, + "step": 378 + }, + { + "epoch": 0.036617262423714034, + "eval_accuracy": 0.10266948987803573, + "eval_loss": 7.515625, + "eval_runtime": 236.7976, + "eval_samples_per_second": 142.599, + "eval_steps_per_second": 2.23, + "step": 378 + }, + { + "epoch": 0.036714133488327035, + "grad_norm": 0.5708773136138916, + "learning_rate": 9.99649326746101e-06, + "loss": 7.543, + "step": 379 + }, + { + "epoch": 0.036714133488327035, + "eval_accuracy": 0.10289378586351103, + "eval_loss": 7.515625, + "eval_runtime": 236.0204, + "eval_samples_per_second": 143.068, + "eval_steps_per_second": 2.237, + "step": 379 + }, + { + "epoch": 0.036811004552940035, + "grad_norm": 0.5848063230514526, + "learning_rate": 9.99648358035455e-06, + "loss": 7.5156, + "step": 380 + }, + { + "epoch": 0.036811004552940035, + "eval_accuracy": 0.10301302633384825, + "eval_loss": 7.51171875, + "eval_runtime": 237.3865, + "eval_samples_per_second": 142.245, + "eval_steps_per_second": 2.224, + "step": 380 + }, + { + "epoch": 0.036907875617553036, + "grad_norm": 0.5812904238700867, + "learning_rate": 9.996473893248087e-06, + "loss": 7.5664, + "step": 381 + }, + { + "epoch": 0.036907875617553036, + "eval_accuracy": 0.1031038968937872, + "eval_loss": 7.51171875, + "eval_runtime": 236.029, + "eval_samples_per_second": 143.063, + "eval_steps_per_second": 2.237, + "step": 381 + }, + { + "epoch": 0.03700474668216604, + "grad_norm": 0.5508126020431519, + "learning_rate": 9.996464206141625e-06, + "loss": 7.5625, + "step": 382 + }, + { + "epoch": 0.03700474668216604, + "eval_accuracy": 0.10313258524195525, + "eval_loss": 7.5078125, + "eval_runtime": 239.8272, + "eval_samples_per_second": 140.797, + "eval_steps_per_second": 2.202, + "step": 382 + }, + { + "epoch": 0.03710161774677904, + "grad_norm": 0.5484282374382019, + "learning_rate": 9.996454519035165e-06, + "loss": 7.5312, + "step": 383 + }, + { + "epoch": 0.03710161774677904, + "eval_accuracy": 0.10315090988816147, + "eval_loss": 7.5078125, + "eval_runtime": 237.933, + "eval_samples_per_second": 141.918, + "eval_steps_per_second": 2.219, + "step": 383 + }, + { + "epoch": 0.03719848881139204, + "grad_norm": 0.5489575266838074, + "learning_rate": 9.996444831928703e-06, + "loss": 7.625, + "step": 384 + }, + { + "epoch": 0.03719848881139204, + "eval_accuracy": 0.10320996562001093, + "eval_loss": 7.5078125, + "eval_runtime": 238.4765, + "eval_samples_per_second": 141.595, + "eval_steps_per_second": 2.214, + "step": 384 + }, + { + "epoch": 0.03729535987600504, + "grad_norm": 0.5515839457511902, + "learning_rate": 9.996435144822241e-06, + "loss": 7.5898, + "step": 385 + }, + { + "epoch": 0.03729535987600504, + "eval_accuracy": 0.1033970622841987, + "eval_loss": 7.50390625, + "eval_runtime": 237.4396, + "eval_samples_per_second": 142.213, + "eval_steps_per_second": 2.224, + "step": 385 + }, + { + "epoch": 0.03739223094061804, + "grad_norm": 0.5489226579666138, + "learning_rate": 9.996425457715781e-06, + "loss": 7.5625, + "step": 386 + }, + { + "epoch": 0.03739223094061804, + "eval_accuracy": 0.10353740649400565, + "eval_loss": 7.5, + "eval_runtime": 235.8228, + "eval_samples_per_second": 143.188, + "eval_steps_per_second": 2.239, + "step": 386 + }, + { + "epoch": 0.037489102005231034, + "grad_norm": 0.5816370248794556, + "learning_rate": 9.99641577060932e-06, + "loss": 7.5664, + "step": 387 + }, + { + "epoch": 0.037489102005231034, + "eval_accuracy": 0.10371405260956713, + "eval_loss": 7.5, + "eval_runtime": 236.7279, + "eval_samples_per_second": 142.641, + "eval_steps_per_second": 2.23, + "step": 387 + }, + { + "epoch": 0.037585973069844035, + "grad_norm": 0.6061241030693054, + "learning_rate": 9.996406083502859e-06, + "loss": 7.4609, + "step": 388 + }, + { + "epoch": 0.037585973069844035, + "eval_accuracy": 0.10385063346391309, + "eval_loss": 7.49609375, + "eval_runtime": 236.382, + "eval_samples_per_second": 142.849, + "eval_steps_per_second": 2.234, + "step": 388 + }, + { + "epoch": 0.037682844134457036, + "grad_norm": 0.5538076758384705, + "learning_rate": 9.996396396396397e-06, + "loss": 7.5469, + "step": 389 + }, + { + "epoch": 0.037682844134457036, + "eval_accuracy": 0.10396234722332831, + "eval_loss": 7.49609375, + "eval_runtime": 236.2463, + "eval_samples_per_second": 142.931, + "eval_steps_per_second": 2.235, + "step": 389 + }, + { + "epoch": 0.03777971519907004, + "grad_norm": 0.5397905707359314, + "learning_rate": 9.996386709289936e-06, + "loss": 7.5742, + "step": 390 + }, + { + "epoch": 0.03777971519907004, + "eval_accuracy": 0.10398232195615975, + "eval_loss": 7.4921875, + "eval_runtime": 236.8546, + "eval_samples_per_second": 142.564, + "eval_steps_per_second": 2.229, + "step": 390 + }, + { + "epoch": 0.03787658626368304, + "grad_norm": 0.5839679837226868, + "learning_rate": 9.996377022183475e-06, + "loss": 7.4375, + "step": 391 + }, + { + "epoch": 0.03787658626368304, + "eval_accuracy": 0.10396709484098679, + "eval_loss": 7.4921875, + "eval_runtime": 236.6285, + "eval_samples_per_second": 142.7, + "eval_steps_per_second": 2.231, + "step": 391 + }, + { + "epoch": 0.03797345732829604, + "grad_norm": 0.5725728869438171, + "learning_rate": 9.996367335077013e-06, + "loss": 7.4961, + "step": 392 + }, + { + "epoch": 0.03797345732829604, + "eval_accuracy": 0.10393614847954215, + "eval_loss": 7.48828125, + "eval_runtime": 237.6574, + "eval_samples_per_second": 142.083, + "eval_steps_per_second": 2.222, + "step": 392 + }, + { + "epoch": 0.03797345732829604, + "step": 392, + "total_flos": 2185295466332160.0, + "train_loss": 8.552704480229592, + "train_runtime": 93913.2173, + "train_samples_per_second": 703.461, + "train_steps_per_second": 10.992 + } + ], + "logging_steps": 1, + "max_steps": 1032300, + "num_input_tokens_seen": 0, + "num_train_epochs": 100, + "save_steps": 1000000, + "stateful_callbacks": { + "TrainerControl": { + "args": { + "should_epoch_stop": false, + "should_evaluate": false, + "should_log": false, + "should_save": false, + "should_training_stop": false + }, + "attributes": {} + } + }, + "total_flos": 2185295466332160.0, + "train_batch_size": 64, + "trial_name": null, + "trial_params": null +}