--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_50_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: distilbert_lda_50_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.3295362082994304 --- # distilbert_lda_50_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_50_v1](https://huggingface.co/gokulsrinivasagan/distilbert_lda_50_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 1.0962 - Accuracy: 0.3295 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.1024 | 1.0 | 1534 | 1.0993 | 0.3274 | | 1.0986 | 2.0 | 3068 | 1.0987 | 0.3545 | | 1.0987 | 3.0 | 4602 | 1.0989 | 0.3274 | | 1.0986 | 4.0 | 6136 | 1.1016 | 0.3182 | | 1.0985 | 5.0 | 7670 | 1.0989 | 0.3545 | | 1.0987 | 6.0 | 9204 | 1.0989 | 0.3545 | | 1.0985 | 7.0 | 10738 | 1.0968 | 0.3182 | | 1.0986 | 8.0 | 12272 | 1.0991 | 0.3182 | | 1.0988 | 9.0 | 13806 | 1.0962 | 0.3274 | | 1.0986 | 10.0 | 15340 | 1.0992 | 0.3274 | | 1.0986 | 11.0 | 16874 | 1.0990 | 0.3274 | | 1.0984 | 12.0 | 18408 | 1.0991 | 0.3182 | | 1.0985 | 13.0 | 19942 | 1.0965 | 0.3182 | | 1.0988 | 14.0 | 21476 | 1.0987 | 0.3274 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3