--- library_name: transformers language: - en base_model: gokulsrinivasagan/distilbert_lda_50_v1_book tags: - generated_from_trainer datasets: - glue metrics: - spearmanr model-index: - name: distilbert_lda_50_v1_book_stsb results: - task: name: Text Classification type: text-classification dataset: name: GLUE STSB type: glue args: stsb metrics: - name: Spearmanr type: spearmanr value: 0.8025650669509531 --- # distilbert_lda_50_v1_book_stsb This model is a fine-tuned version of [gokulsrinivasagan/distilbert_lda_50_v1_book](https://huggingface.co/gokulsrinivasagan/distilbert_lda_50_v1_book) on the GLUE STSB dataset. It achieves the following results on the evaluation set: - Loss: 0.7989 - Pearson: 0.8047 - Spearmanr: 0.8026 - Combined Score: 0.8036 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Pearson | Spearmanr | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:-------:|:---------:|:--------------:| | 2.7588 | 1.0 | 23 | 2.3855 | 0.2412 | 0.2400 | 0.2406 | | 1.3932 | 2.0 | 46 | 1.0838 | 0.7225 | 0.7294 | 0.7260 | | 0.8739 | 3.0 | 69 | 0.9564 | 0.7766 | 0.7839 | 0.7803 | | 0.6995 | 4.0 | 92 | 1.0132 | 0.7843 | 0.7951 | 0.7897 | | 0.5789 | 5.0 | 115 | 0.7989 | 0.8047 | 0.8026 | 0.8036 | | 0.4663 | 6.0 | 138 | 0.9842 | 0.7990 | 0.8045 | 0.8017 | | 0.3577 | 7.0 | 161 | 0.8651 | 0.8077 | 0.8095 | 0.8086 | | 0.2967 | 8.0 | 184 | 0.8846 | 0.8140 | 0.8160 | 0.8150 | | 0.2521 | 9.0 | 207 | 0.8503 | 0.8081 | 0.8117 | 0.8099 | | 0.2194 | 10.0 | 230 | 0.9103 | 0.8183 | 0.8194 | 0.8188 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3