--- library_name: transformers language: - en license: apache-2.0 base_model: google/bert_uncased_L-4_H-512_A-8 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_uncased_L-4_H-512_A-8_rte results: - task: name: Text Classification type: text-classification dataset: name: GLUE RTE type: glue args: rte metrics: - name: Accuracy type: accuracy value: 0.5992779783393501 --- # bert_uncased_L-4_H-512_A-8_rte This model is a fine-tuned version of [google/bert_uncased_L-4_H-512_A-8](https://huggingface.co/google/bert_uncased_L-4_H-512_A-8) on the GLUE RTE dataset. It achieves the following results on the evaluation set: - Loss: 0.6563 - Accuracy: 0.5993 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.6945 | 1.0 | 10 | 0.6783 | 0.5451 | | 0.6527 | 2.0 | 20 | 0.6641 | 0.5884 | | 0.6024 | 3.0 | 30 | 0.6563 | 0.5993 | | 0.528 | 4.0 | 40 | 0.6870 | 0.6173 | | 0.4528 | 5.0 | 50 | 0.7337 | 0.6173 | | 0.3851 | 6.0 | 60 | 0.7501 | 0.6173 | | 0.3052 | 7.0 | 70 | 0.8064 | 0.6318 | | 0.2478 | 8.0 | 80 | 0.9153 | 0.5993 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3