--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_50_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_50_v1_book_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # bert_tiny_lda_50_v1_book_wnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_50_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_50_v1_book) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6965 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.7018 | 1.0 | 3 | 0.6965 | 0.5634 | | 0.6999 | 2.0 | 6 | 0.7075 | 0.3944 | | 0.6971 | 3.0 | 9 | 0.7253 | 0.4225 | | 0.6921 | 4.0 | 12 | 0.7110 | 0.4225 | | 0.6941 | 5.0 | 15 | 0.7165 | 0.3944 | | 0.689 | 6.0 | 18 | 0.7330 | 0.3380 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3