--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_tiny_lda_20_v1_qqp results: - task: name: Text Classification type: text-classification dataset: name: GLUE QQP type: glue args: qqp metrics: - name: Accuracy type: accuracy value: 0.8355181795696265 - name: F1 type: f1 value: 0.7821386450006552 --- # bert_tiny_lda_20_v1_qqp This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE QQP dataset. It achieves the following results on the evaluation set: - Loss: 0.3641 - Accuracy: 0.8355 - F1: 0.7821 - Combined Score: 0.8088 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:--------------:| | 0.4896 | 1.0 | 1422 | 0.4397 | 0.7902 | 0.6817 | 0.7359 | | 0.3891 | 2.0 | 2844 | 0.3806 | 0.8247 | 0.7674 | 0.7960 | | 0.3332 | 3.0 | 4266 | 0.3641 | 0.8355 | 0.7821 | 0.8088 | | 0.29 | 4.0 | 5688 | 0.3666 | 0.8448 | 0.7868 | 0.8158 | | 0.2535 | 5.0 | 7110 | 0.3724 | 0.8485 | 0.7977 | 0.8231 | | 0.2212 | 6.0 | 8532 | 0.3716 | 0.8517 | 0.8042 | 0.8280 | | 0.1947 | 7.0 | 9954 | 0.4039 | 0.8528 | 0.8050 | 0.8289 | | 0.1711 | 8.0 | 11376 | 0.4276 | 0.8535 | 0.7964 | 0.8249 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3