--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_20_v1 tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_20_v1_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.6954841334418226 --- # bert_tiny_lda_20_v1_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_20_v1](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_20_v1) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.7126 - Accuracy: 0.6955 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.9696 | 1.0 | 1534 | 0.8635 | 0.6102 | | 0.8307 | 2.0 | 3068 | 0.7849 | 0.6501 | | 0.7523 | 3.0 | 4602 | 0.7467 | 0.6728 | | 0.6962 | 4.0 | 6136 | 0.7247 | 0.6862 | | 0.6472 | 5.0 | 7670 | 0.7248 | 0.6957 | | 0.6032 | 6.0 | 9204 | 0.7455 | 0.6984 | | 0.5606 | 7.0 | 10738 | 0.7510 | 0.6987 | | 0.5204 | 8.0 | 12272 | 0.7849 | 0.6915 | | 0.4808 | 9.0 | 13806 | 0.8428 | 0.6963 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3