--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_100_v1_book_sst2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE SST2 type: glue args: sst2 metrics: - name: Accuracy type: accuracy value: 0.8555045871559633 --- # bert_tiny_lda_100_v1_book_sst2 This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1_book) on the GLUE SST2 dataset. It achieves the following results on the evaluation set: - Loss: 0.3489 - Accuracy: 0.8555 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3634 | 1.0 | 264 | 0.3489 | 0.8555 | | 0.2189 | 2.0 | 528 | 0.3634 | 0.8601 | | 0.1528 | 3.0 | 792 | 0.4507 | 0.8647 | | 0.1199 | 4.0 | 1056 | 0.3828 | 0.8761 | | 0.094 | 5.0 | 1320 | 0.3957 | 0.8727 | | 0.0742 | 6.0 | 1584 | 0.4764 | 0.8589 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3