--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_tiny_lda_100_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_tiny_lda_100_v1_book_mnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.7589503661513426 --- # bert_tiny_lda_100_v1_book_mnli This model is a fine-tuned version of [gokulsrinivasagan/bert_tiny_lda_100_v1_book](https://huggingface.co/gokulsrinivasagan/bert_tiny_lda_100_v1_book) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6109 - Accuracy: 0.7590 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 0.7993 | 1.0 | 1534 | 0.6938 | 0.7060 | | 0.6472 | 2.0 | 3068 | 0.6425 | 0.7343 | | 0.5649 | 3.0 | 4602 | 0.6277 | 0.7479 | | 0.4986 | 4.0 | 6136 | 0.6238 | 0.7495 | | 0.4399 | 5.0 | 7670 | 0.6533 | 0.7545 | | 0.3857 | 6.0 | 9204 | 0.7154 | 0.7527 | | 0.3351 | 7.0 | 10738 | 0.7138 | 0.7572 | | 0.2914 | 8.0 | 12272 | 0.7700 | 0.7533 | | 0.2533 | 9.0 | 13806 | 0.8576 | 0.7496 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3