--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: bert_base_lda_wnli results: - task: name: Text Classification type: text-classification dataset: name: GLUE WNLI type: glue args: wnli metrics: - name: Accuracy type: accuracy value: 0.5633802816901409 --- # bert_base_lda_wnli This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda](https://huggingface.co/gokulsrinivasagan/bert_base_lda) on the GLUE WNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6864 - Accuracy: 0.5634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.1638 | 1.0 | 3 | 1.4608 | 0.5634 | | 1.0198 | 2.0 | 6 | 1.1097 | 0.5634 | | 1.1474 | 3.0 | 9 | 0.8995 | 0.5634 | | 0.8846 | 4.0 | 12 | 0.8201 | 0.4366 | | 0.7886 | 5.0 | 15 | 0.6994 | 0.4366 | | 0.738 | 6.0 | 18 | 0.7087 | 0.5634 | | 0.7195 | 7.0 | 21 | 0.7214 | 0.4366 | | 0.7036 | 8.0 | 24 | 0.6931 | 0.5634 | | 0.6935 | 9.0 | 27 | 0.6896 | 0.5634 | | 0.6941 | 10.0 | 30 | 0.6926 | 0.5634 | | 0.6949 | 11.0 | 33 | 0.6936 | 0.4366 | | 0.6959 | 12.0 | 36 | 0.6911 | 0.5634 | | 0.6927 | 13.0 | 39 | 0.6864 | 0.5634 | | 0.6928 | 14.0 | 42 | 0.6893 | 0.5634 | | 0.6958 | 15.0 | 45 | 0.6896 | 0.5634 | | 0.6936 | 16.0 | 48 | 0.6911 | 0.5634 | | 0.6955 | 17.0 | 51 | 0.6911 | 0.5634 | | 0.6939 | 18.0 | 54 | 0.6906 | 0.5634 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3