--- library_name: transformers language: - en base_model: gokulsrinivasagan/bert_base_lda_5_v1_book tags: - generated_from_trainer datasets: - glue metrics: - accuracy - f1 model-index: - name: bert_base_lda_5_v1_book_mrpc results: - task: name: Text Classification type: text-classification dataset: name: GLUE MRPC type: glue args: mrpc metrics: - name: Accuracy type: accuracy value: 0.7181372549019608 - name: F1 type: f1 value: 0.8130081300813008 --- # bert_base_lda_5_v1_book_mrpc This model is a fine-tuned version of [gokulsrinivasagan/bert_base_lda_5_v1_book](https://huggingface.co/gokulsrinivasagan/bert_base_lda_5_v1_book) on the GLUE MRPC dataset. It achieves the following results on the evaluation set: - Loss: 0.5504 - Accuracy: 0.7181 - F1: 0.8130 - Combined Score: 0.7656 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 256 - eval_batch_size: 256 - seed: 10 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Combined Score | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:--------------:| | 0.6274 | 1.0 | 15 | 0.6026 | 0.6765 | 0.7905 | 0.7335 | | 0.5872 | 2.0 | 30 | 0.5821 | 0.6985 | 0.8178 | 0.7582 | | 0.5589 | 3.0 | 45 | 0.5609 | 0.7010 | 0.8082 | 0.7546 | | 0.52 | 4.0 | 60 | 0.5504 | 0.7181 | 0.8130 | 0.7656 | | 0.4758 | 5.0 | 75 | 0.5648 | 0.6863 | 0.7647 | 0.7255 | | 0.4144 | 6.0 | 90 | 0.5725 | 0.7279 | 0.8147 | 0.7713 | | 0.3139 | 7.0 | 105 | 0.6853 | 0.7181 | 0.8074 | 0.7628 | | 0.2645 | 8.0 | 120 | 0.7634 | 0.7475 | 0.8362 | 0.7919 | | 0.2114 | 9.0 | 135 | 0.8087 | 0.7255 | 0.825 | 0.7752 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.2.1+cu118 - Datasets 2.17.0 - Tokenizers 0.20.3